Home
Class 12
MATHS
(2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to...

`(2)/(3!)+(4)/(5!)+(6)/(7!)+`..is equal to

A

`e^(1//2)`

B

`e^(-1)`

C

e

D

`e^(-1//3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = \frac{2}{3!} + \frac{4}{5!} + \frac{6}{7!} + \ldots \), we start by identifying the general term of the series. ### Step-by-step Solution: 1. **Identify the General Term**: The series can be expressed in terms of \( n \): \[ S = \sum_{n=1}^{\infty} \frac{2n}{(2n+1)!} \] This is because when \( n = 1 \), we have \( \frac{2 \cdot 1}{3!} \), when \( n = 2 \), we have \( \frac{2 \cdot 2}{5!} \), and so on. 2. **Rewrite the General Term**: We can rewrite \( \frac{2n}{(2n+1)!} \) as: \[ S = \sum_{n=1}^{\infty} \left( \frac{2n + 1 - 1}{(2n + 1)!} \right) \] This simplifies to: \[ S = \sum_{n=1}^{\infty} \left( \frac{2n + 1}{(2n + 1)!} - \frac{1}{(2n + 1)!} \right) \] 3. **Separate the Summation**: Now we can separate the summation: \[ S = \sum_{n=1}^{\infty} \frac{2n + 1}{(2n + 1)!} - \sum_{n=1}^{\infty} \frac{1}{(2n + 1)!} \] 4. **Evaluate the First Summation**: The first summation can be simplified: \[ \sum_{n=1}^{\infty} \frac{2n + 1}{(2n + 1)!} = \sum_{n=1}^{\infty} \frac{1}{(2n)!} = e^x \text{ evaluated at } x=1 \] This is because the series for \( e^x \) includes all factorial terms. 5. **Evaluate the Second Summation**: The second summation is: \[ \sum_{n=1}^{\infty} \frac{1}{(2n + 1)!} = \frac{e - 1}{2} \] 6. **Combine the Results**: Now we can combine the results: \[ S = \sum_{n=1}^{\infty} \frac{1}{(2n)!} - \sum_{n=1}^{\infty} \frac{1}{(2n + 1)!} \] This results in: \[ S = e^{-1} \] 7. **Final Result**: Therefore, the value of the series is: \[ S = e - 1 \]
Promotional Banner

Topper's Solved these Questions

  • EXPONENTIAL AND LOGARITHMIC SERIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|37 Videos
  • ELLIPSE

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • HEIGHTS AND DISTANCES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|45 Videos

Similar Questions

Explore conceptually related problems

The sum of the series 5/(1. 2.3)+7/(3. 4.5)+9/(5. 6.7)+ ....is equal to

The sum of the series (2)/(1!) + (4)/(3!) + (6)/(5!) + ……. "to" oo equals

Sum of n terms of the series (1^(4))/(1.3)+(2^(4))/(3.5)+(3^(4))/(5.7)+…. is equal to

5.2 - 3.6 is equal to

{:[(7,1,2),(9,2,1)]:}{:[(3),(4),(5)]:}+2{:[(4),(2)]:} is equal to

The vector equation of the line (x-5)/(3) = ( y +4)/(7) = (z-6)/(2) is vecr = 5 hati - 4 hatj + 6 hatk + lamda( 3 hati + 7 hatj + 2hatk)

The sum of series 2/(3!)+4/(5!)+6/(7!)+...........oo is :

2 (5)/(4) - 4 (7)/(6) + 3 (1)/(3)

The sum of the series 1+ 2/3+ (1)/(3 ^(2)) + (2 )/(3 ^(3)) + (1)/(3 ^(4)) + (2)/(3 ^(5)) + (1)/(3 ^(6))+ (2)/(3 ^(7))+ …… upto infinite terms is equal to :

cos^(-1)(cos((7pi)/6)) is equal to (A) (7pi)/6 (B) (5pi)/6 (C) pi/3 (D) pi/6

OBJECTIVE RD SHARMA ENGLISH-EXPONENTIAL AND LOGARITHMIC SERIES-Chapter Test
  1. The series expansion of log{(1+x)^(1+x)(1-x)^(1-x)} is

    Text Solution

    |

  2. 2log x-log(x+1)-log(x-1) is equals to

    Text Solution

    |

  3. The coefficient of x^(n) in the expansion of log(e)(1+3x+2x^2) is

    Text Solution

    |

  4. If x ne 0 then the sum of the series 1+(x)/(2!)+(2x^(2))/(3!)+(3x^(3...

    Text Solution

    |

  5. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+…and n is not a mutiple of...

    Text Solution

    |

  6. If log(1-x+x^(2))=a(1)x+a(2)x^(2)+a(3)x^(3)+… then a(3)+a(6)+a(9)+.....

    Text Solution

    |

  7. The coefficient of x^(n) in the expansion of log(a)(1+x) is

    Text Solution

    |

  8. The coeffiecent of n^(-r) in the expansion of log(10)((n)/(n-1)) is

    Text Solution

    |

  9. The sum of the series (x-1)/(x+1)+1/2(x^(2)-1)/(x+1)^(2)+1/3(x^(3)-1...

    Text Solution

    |

  10. The sum of series 2[ 7^(-1)+3^(-1).7^(-3)+5^(-1).7^(-5)+...] is

    Text Solution

    |

  11. The coefficient of x^(6) in the expansion of log{(1+x)^(1+x)(1-x)^(...

    Text Solution

    |

  12. The sum of the series 1/2x^2+2/3x^3+3/4x^4+4/5x^5+... is :

    Text Solution

    |

  13. If x,y,z are three consecutive positive integers and X-Z + 2 = 0, then...

    Text Solution

    |

  14. The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(...

    Text Solution

    |

  15. The value of 1-log(e)2+(log(e)2)^(2)/(2!)-(log(e)2)^(3)/(3!)+.. is

    Text Solution

    |

  16. 1+(loge n)^2 /(2!) + (loge n )^4 / (4!)+...=

    Text Solution

    |

  17. (2)/(3!)+(4)/(5!)+(6)/(7!)+..is equal to

    Text Solution

    |

  18. Sum of n terms of the series 1/(1.2.3.4.)+1/(2.3.4.5) +1/(3.4.5.6)+.....

    Text Solution

    |

  19. The value of 1+(log(e)x)+(log(e)x)^(2)/(2!)+(log(e)x)^(3)/(3!)+…inft...

    Text Solution

    |

  20. If |x|lt1 then the coefficient of x^(3) in the expansion of log(1+x+x^...

    Text Solution

    |