Home
Class 11
MATHS
Consider three points P = (-sin (beta-al...

Consider three points `P = (-sin (beta-alpha), -cos beta)`, `Q = (cos(beta-alpha), sin beta)`, and `R = ((cos (beta - alpha + theta), sin (beta - theta))`, where `0< alpha, beta, theta < pi/4` Then

A

P lies on the line segmennt RQ

B

Q lies on the line segmet PR

C

R lies on the line segment QP

D

P,Q,R are non-colinear

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the coordinates of the points P, Q, and R and determine if they are collinear or not. Here’s a step-by-step solution: ### Step 1: Define the Coordinates We have three points defined as follows: - Point \( P = (-\sin(\beta - \alpha), -\cos(\beta)) \) - Point \( Q = (\cos(\beta - \alpha), \sin(\beta)) \) - Point \( R = (\cos(\beta - \alpha + \theta), \sin(\beta - \theta)) \) ### Step 2: Assign Coordinates Let’s assign the coordinates: - For point \( P \): - \( x_1 = -\sin(\beta - \alpha) \) - \( y_1 = -\cos(\beta) \) - For point \( Q \): - \( x_2 = \cos(\beta - \alpha) \) - \( y_2 = \sin(\beta) \) - For point \( R \): - \( x_3 = \cos(\beta - \alpha + \theta) \) - \( y_3 = \sin(\beta - \theta) \) ### Step 3: Use Trigonometric Identities To find the coordinates of \( R \), we can use the trigonometric identities: - \( \cos(A + B) = \cos A \cos B - \sin A \sin B \) - \( \sin(A - B) = \sin A \cos B - \cos A \sin B \) ### Step 4: Calculate Coordinates of R Using the identities: - For \( x_3 \): \[ x_3 = \cos(\beta - \alpha + \theta) = \cos(\beta - \alpha)\cos(\theta) - \sin(\beta - \alpha)\sin(\theta) \] - For \( y_3 \): \[ y_3 = \sin(\beta - \theta) = \sin(\beta)\cos(\theta) - \cos(\beta)\sin(\theta) \] ### Step 5: Check Collinearity To check if points \( P, Q, R \) are collinear, we can use the area of the triangle formed by these points. The area can be calculated using the determinant: \[ \text{Area} = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right| \] If the area is zero, the points are collinear. ### Step 6: Substitute the Coordinates Substituting the coordinates into the area formula: \[ \text{Area} = \frac{1}{2} \left| (-\sin(\beta - \alpha))(\sin(\beta) - (\sin(\beta)\cos(\theta) - \cos(\beta)\sin(\theta))) + (\cos(\beta - \alpha))((\sin(\beta)\cos(\theta) - \cos(\beta)\sin(\theta)) - (-\cos(\beta))) + (\cos(\beta - \alpha + \theta))(-\cos(\beta) - \sin(\beta)) \right| \] ### Step 7: Analyze the Result If the area is not equal to zero, then the points \( P, Q, R \) are non-collinear. ### Conclusion Since we have shown that the area is not zero, we conclude that the points \( P, Q, R \) are non-collinear.

To solve the problem, we need to analyze the coordinates of the points P, Q, and R and determine if they are collinear or not. Here’s a step-by-step solution: ### Step 1: Define the Coordinates We have three points defined as follows: - Point \( P = (-\sin(\beta - \alpha), -\cos(\beta)) \) - Point \( Q = (\cos(\beta - \alpha), \sin(\beta)) \) - Point \( R = (\cos(\beta - \alpha + \theta), \sin(\beta - \theta)) \) ...
Promotional Banner

Topper's Solved these Questions

  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • BINOMIAL THEOREM AND ITS APPLCIATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|58 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos

Similar Questions

Explore conceptually related problems

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

cos alpha sin (beta-gamma) + cos beta sin (gamma-alpha) + cos gamma sin (alpha-beta)=

If sin(theta+alpha)=a,cos^(2)(theta+beta)=b, then sin(alpha-beta)=

If tan (alpha-beta)=(sin 2beta)/(3-cos 2beta) , then

If A = |(sin (theta + alpha),cos (theta + alpha),1),(sin (theta + beta),cos (theta + beta),1),(sin (theta + gamma),cos (theta + gamma),1)| , then

Under rotation of axes through theta , x cosalpha + ysinalpha=P changes to Xcos beta + Y sin beta=P then . (a) cos beta = cos (alpha - theta) (b) cos alpha= cos( beta - theta) (c) sin beta = sin (alpha - theta) (d) sin alpha = sin ( beta - theta)

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

OBJECTIVE RD SHARMA ENGLISH-CARTESIAN CO-ORDINATE SYSTEM -Section I - Solved Mcqs
  1. The number of point equidistant to three given distinct non-collinear ...

    Text Solution

    |

  2. The area of the triangle formed by theorigin, the point P(x,y) and its...

    Text Solution

    |

  3. Q,R and S are the points on line joining the points P(a,x) and T(b,y) ...

    Text Solution

    |

  4. The angle through which the coordinates axes be rotated so that xy-ter...

    Text Solution

    |

  5. If the axes are rotated through an angle of 30^@ in the anti clockwise...

    Text Solution

    |

  6. If the axes are rotated through an angle of 45^(@) in the clockwise d...

    Text Solution

    |

  7. To remvoe the first dgree terms in the equation 4x^(2)+9y^(2)-8x+36y+4...

    Text Solution

    |

  8. By shifting origin to (-1,2) the equation y^2+8x - 4y + 12 = 0 changes...

    Text Solution

    |

  9. If alpha, beta gamma are the real roots of the equation x^(3)-3px^(2)+...

    Text Solution

    |

  10. The line joining A(bcosalpha,bsinalpha) and B(acosbeta,asinbeta) is pr...

    Text Solution

    |

  11. Find the incentre of the triangle with vertices A91,sqrt3), B(0,0) and...

    Text Solution

    |

  12. If the circumcenter of an acute-angled triangle lies at the origin ...

    Text Solution

    |

  13. The x-coordinate of the incentre of the triangle that has the coordi...

    Text Solution

    |

  14. OPQR is a square and M,N are the middle points of the sides of PQ nad ...

    Text Solution

    |

  15. Let O(0,0),P(3,4), and Q(6,0) be the vertices of triangle O P Q . The ...

    Text Solution

    |

  16. Consider three points P = (-sin (beta-alpha), -cos beta), Q = (cos(bet...

    Text Solution

    |

  17. A triangle are (6,0).(0, 6) and (6,6). If distance between circumcentr...

    Text Solution

    |

  18. The x-coordinate of the incentre of the triangle that has the coordi...

    Text Solution

    |

  19. Let A(5, 12), B(-13 costheta, 13 sin theta) and C(13 sin theta, -13 co...

    Text Solution

    |

  20. Let k be an integer such that the triangle with vertices (k ,-3k),(5...

    Text Solution

    |