Home
Class 11
MATHS
The determinant Delta=|(a^2,a,1),(cos(n...

The determinant `Delta=|(a^2,a,1),(cos(nx),cos (n + 1) x,cos(n+2) x),(sin(nx),sin (n +1)x,sin (n + 2) x)|` is independent of

A

n

B

a

C

x

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \[ \Delta = \begin{vmatrix} a^2 & a & 1 \\ \cos(nx) & \cos((n+1)x) & \cos((n+2)x) \\ \sin(nx) & \sin((n+1)x) & \sin((n+2)x) \end{vmatrix} \] we will expand it and analyze the result to determine its dependency on \( n \). ### Step 1: Expand the Determinant We can use the formula for the determinant of a 3x3 matrix: \[ \Delta = a_1 \begin{vmatrix} b_2 & b_3 \\ c_2 & c_3 \end{vmatrix} - a_2 \begin{vmatrix} b_1 & b_3 \\ c_1 & c_3 \end{vmatrix} + a_3 \begin{vmatrix} b_1 & b_2 \\ c_1 & c_2 \end{vmatrix} \] Where \( a_1, a_2, a_3 \) are the elements of the first row, and \( b_i, c_i \) are the elements of the second and third rows respectively. ### Step 2: Calculate the Minors We will calculate the minors: 1. For \( a_1 = a^2 \): \[ \begin{vmatrix} \cos((n+1)x) & \cos((n+2)x) \\ \sin((n+1)x) & \sin((n+2)x) \end{vmatrix} = \cos((n+1)x) \sin((n+2)x) - \sin((n+1)x) \cos((n+2)x) \] This simplifies to: \[ \sin((n+2)x - (n+1)x) = \sin(x) \] 2. For \( a_2 = a \): \[ -a \begin{vmatrix} \cos(nx) & \cos((n+2)x) \\ \sin(nx) & \sin((n+2)x) \end{vmatrix} = -a (\cos(nx) \sin((n+2)x) - \sin(nx) \cos((n+2)x)) = -a \sin((n+2)x - nx) = -a \sin(x) \] 3. For \( a_3 = 1 \): \[ \begin{vmatrix} \cos(nx) & \cos((n+1)x) \\ \sin(nx) & \sin((n+1)x) \end{vmatrix} = \cos(nx) \sin((n+1)x) - \sin(nx) \cos((n+1)x) = \sin((n+1)x - nx) = \sin(x) \] ### Step 3: Combine the Results Now we can combine the results from the minors: \[ \Delta = a^2 \sin(x) - a (-\sin(x)) + 1 \sin(x) \] \[ = a^2 \sin(x) + a \sin(x) + \sin(x) \] \[ = \sin(x)(a^2 + a + 1) \] ### Step 4: Analyze Dependency From the final expression \( \Delta = \sin(x)(a^2 + a + 1) \), we can see that: - The determinant \( \Delta \) depends on \( a \) and \( x \). - It does not depend on \( n \). ### Conclusion Thus, the determinant \( \Delta \) is independent of \( n \).

To solve the determinant \[ \Delta = \begin{vmatrix} a^2 & a & 1 \\ \cos(nx) & \cos((n+1)x) & \cos((n+2)x) \\ \sin(nx) & \sin((n+1)x) & \sin((n+2)x) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|74 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of the determinants |{:(1,a,a^(2)),(cos(n-1)x,cos nx , cos(n+1)x),(sin(n-1)x , sin nx , sin(n+1)x):}| is zero if

If the maximum and minimum values of the determinant |(1 + sin^(2)x,cos^(2) x,sin 2x),(sin^(2) x,1 + cos^(2) x,sin 2x),(sin^(2) x,cos^(2) x,1 + sin 2x)| are alpha and beta , then

Prove that the determinant Delta =|{:(x,,sintheta,,cos theta),(-sin theta,,-x,,1),(cos theta,,1,,x):}| is independent of theta .

sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx

Prove that: sin (n + 1) x sin (n + 2)x + cos (n + 1) x cos (n + 2) x = cos x

Prove that sin (n+1) x sin (n +2) x + cos (n +1) x cos (n +2) x = cos x

Evaluate int_(0)^(2pi)(xcos^(2n)x)/(cos^(2n)x+sin^(2n)x)dx

Solve cos x + cos 2x+...+ cos (nx) =n, n in N .

(1 + sin 2x + cos 2x )/( cos x + sin x ) = 2 cos x

For n gt 0 int_(0)^(2pi)(x sin^(2n)x)/(sin^(2n)x+cos^(2n)x)dx= ….

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. The determinant Delta=|(a^2,a,1),(cos(nx),cos (n + 1) x,cos(n+2) x),(...

    Text Solution

    |

  2. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  3. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  4. Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a...

    Text Solution

    |

  5. |(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

    Text Solution

    |

  6. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  7. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  8. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  9. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  10. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  11. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  12. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  13. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  14. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  15. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  16. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  17. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  18. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  19. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  20. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  21. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |