Home
Class 11
MATHS
If Delta=|(0,b-a,c-a),(a-b,0,c-b),(a-c,...

If `Delta=|(0,b-a,c-a),(a-b,0,c-b),(a-c,b-c,0)|`, then `Delta` eqauals

A

`a + b + c`

B

`-(a + b +c)`

C

`abc`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant \( \Delta = \begin{vmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{vmatrix} \), we will expand the determinant along the first row. ### Step 1: Write the determinant \[ \Delta = \begin{vmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{vmatrix} \] ### Step 2: Expand along the first row Using the first row for expansion, we have: \[ \Delta = 0 \cdot \begin{vmatrix} 0 & c-b \\ b-c & 0 \end{vmatrix} - (b-a) \cdot \begin{vmatrix} a-b & c-b \\ a-c & 0 \end{vmatrix} + (c-a) \cdot \begin{vmatrix} a-b & 0 \\ a-c & b-c \end{vmatrix} \] ### Step 3: Simplify the first term The first term is zero because it is multiplied by 0: \[ 0 \cdot \begin{vmatrix} 0 & c-b \\ b-c & 0 \end{vmatrix} = 0 \] ### Step 4: Calculate the second term Now we need to calculate the second term: \[ -(b-a) \cdot \begin{vmatrix} a-b & c-b \\ a-c & 0 \end{vmatrix} \] Calculating the determinant: \[ \begin{vmatrix} a-b & c-b \\ a-c & 0 \end{vmatrix} = (a-b) \cdot 0 - (c-b)(a-c) = -(c-b)(a-c) \] Thus, the second term becomes: \[ -(b-a)(-(c-b)(a-c)) = (b-a)(c-b)(a-c) \] ### Step 5: Calculate the third term Now we calculate the third term: \[ (c-a) \cdot \begin{vmatrix} a-b & 0 \\ a-c & b-c \end{vmatrix} \] Calculating the determinant: \[ \begin{vmatrix} a-b & 0 \\ a-c & b-c \end{vmatrix} = (a-b)(b-c) - 0 = (a-b)(b-c) \] Thus, the third term becomes: \[ (c-a)(a-b)(b-c) \] ### Step 6: Combine all terms Now we combine all the terms: \[ \Delta = 0 + (b-a)(c-b)(a-c) + (c-a)(a-b)(b-c) \] Notice that both terms are symmetric in nature and can be rearranged. ### Step 7: Factor out common terms We can see that both terms can be factored: \[ \Delta = (b-a)(c-b)(a-c) + (c-a)(a-b)(b-c) = 0 \] ### Conclusion Thus, we find that: \[ \Delta = 0 \]

To solve the determinant \( \Delta = \begin{vmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{vmatrix} \), we will expand the determinant along the first row. ### Step 1: Write the determinant \[ \Delta = \begin{vmatrix} 0 & b-a & c-a \\ a-b & 0 & c-b \\ a-c & b-c & 0 \end{vmatrix} \] ### Step 2: Expand along the first row ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|74 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0 , then sin^(2) A + sin^(2) B + sin^(2) C is

The orthocenter of triangle whose vertices are A(a,0,0),B(0,b,0) and C(0,0,c) is (k/a,k/b,k/c) then k is equal to

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

If a, b and c are real numbers, and Delta=|[b+c,c+a,a+b],[c+a,a+b,b+c],[a+b,b+c,c+a]|=0 . Show that either a+b+c=0 or a=b=c

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

Find the non-zero roots of the equation. (i) Delta=|{:(,a,b,ax+b),(,b,c,bx+c),(,ax+b,bx+c,c):}|=0

In Delta ABC , If b/(c^2-a^2)+a/(c^2-b^2)=0 then

which of the following is // are true for Delta= |{:(a^(2),,1,,a+c),(0,,b^(2)+1,,b+c),(0,,b+c,,c^(2)+1):}| ?

If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+cc+a|=0 .Show that either a" "+" "b" "+" "c" "=" "0" "or" "a" "=" "b" "=" "c .

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If Delta=|(0,b-a,c-a),(a-b,0,c-b),(a-c,b-c,0)|, then Delta eqauals

    Text Solution

    |

  2. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  3. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  4. Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a...

    Text Solution

    |

  5. |(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

    Text Solution

    |

  6. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  7. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  8. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  9. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  10. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  11. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  12. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  13. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  14. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  15. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  16. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  17. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  18. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  19. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  20. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  21. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |