Home
Class 11
MATHS
The value of Delta = |(1,a,b +c),(1,b,c ...

The value of `Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)|`, is

A

1

B

`-1`

C

`a +b +c`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( \Delta = |(1,a,b+c),(1,b,c+a),(1,c,a+b)| \), we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix} \] ### Step 2: Apply the property of determinants We can simplify this determinant by using the property of determinants, which states that if we add or subtract a multiple of one row to another row, the value of the determinant remains unchanged. Here, we will modify the second column by adding the third column to it: \[ \Delta = \begin{vmatrix} 1 & a & b+c \\ 1 & b+c & c+a \\ 1 & c+a & a+b \end{vmatrix} \] ### Step 3: Factor out common terms Now, we can factor out \( (b+c) \) and \( (c+a) \) from the second and third columns respectively: \[ \Delta = \begin{vmatrix} 1 & a & b+c \\ 1 & b+c & c+a \\ 1 & c+a & a+b \end{vmatrix} \] ### Step 4: Expand the determinant Next, we will expand the determinant along the first column: \[ \Delta = 1 \cdot \begin{vmatrix} b+c & c+a \\ c+a & a+b \end{vmatrix} - 1 \cdot \begin{vmatrix} a & b+c \\ c+a & a+b \end{vmatrix} + 1 \cdot \begin{vmatrix} a & b+c \\ b+c & c+a \end{vmatrix} \] ### Step 5: Calculate the 2x2 determinants Now we calculate the 2x2 determinants: 1. \( \begin{vmatrix} b+c & c+a \\ c+a & a+b \end{vmatrix} = (b+c)(a+b) - (c+a)(c+a) \) 2. \( \begin{vmatrix} a & b+c \\ c+a & a+b \end{vmatrix} = a(a+b) - (b+c)(c+a) \) 3. \( \begin{vmatrix} a & b+c \\ b+c & c+a \end{vmatrix} = a(c+a) - (b+c)(b+c) \) ### Step 6: Substitute back into the determinant Substituting these back into the equation for \( \Delta \): \[ \Delta = 1 \cdot \left( (b+c)(a+b) - (c+a)(c+a) \right) - 1 \cdot \left( a(a+b) - (b+c)(c+a) \right) + 1 \cdot \left( a(c+a) - (b+c)(b+c) \right) \] ### Step 7: Simplify the expression After simplifying the above expression, we will find that all terms cancel out, leading to: \[ \Delta = 0 \] ### Conclusion Thus, the value of \( \Delta \) is: \[ \Delta = 0 \]

To find the value of the determinant \( \Delta = |(1,a,b+c),(1,b,c+a),(1,c,a+b)| \), we will follow these steps: ### Step 1: Write the determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|74 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

If the value of the determinant |(a,1, 1) (1,b,1) (1,1,c)| is positive then a. a b c >1 b. a b c> -8 c. a b c -2

Evaluate Delta=|1a b c1b c a1c a b|

The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is a multiple of

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

If a, b, c are sides of the triangle ABC and |(1,a, b),(1,c,a),(1,b,c)|=0 , then the value of cos 2A+cos 2B+cos 2C is equal to

In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0 , then sin^(2) A + sin^(2) B + sin^(2) C is

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)|, is

    Text Solution

    |

  2. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  3. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  4. Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a...

    Text Solution

    |

  5. |(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

    Text Solution

    |

  6. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  7. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  8. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  9. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  10. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  11. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  12. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  13. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  14. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  15. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  16. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  17. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  18. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  19. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  20. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  21. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |