Home
Class 11
MATHS
If A (x(1), y(1)), B (x(2), y(2)) and C ...

If `A (x_(1), y_(1)), B (x_(2), y_(2)) and C (x_(3), y_(3))` are vertices of an equilateral triangle whose each side is equal to a, then prove that
`|(x_(1),y_(1),2),(x_(2),y_(2),2),(x_(3),y_(3),2)|` is equal to

A

`2a^(2)`

B

`2a^(4)`

C

`3a^(2)`

D

`3a^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the determinant \( |(x_1, y_1, 2), (x_2, y_2, 2), (x_3, y_3, 2)| \) is equal to \( 3a^4 \) for the vertices of an equilateral triangle with each side equal to \( a \), we can follow these steps: ### Step 1: Area of Triangle The area \( \Delta \) of triangle \( ABC \) with vertices \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) can be expressed using the determinant: \[ \Delta = \frac{1}{2} \left| \begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right| \] ### Step 2: Multiply by 2 Multiplying both sides by 2 gives: \[ 2\Delta = \left| \begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{array} \right| \] ### Step 3: Multiply by 2 Again Now, we multiply the determinant by 2 in the third column: \[ 4\Delta = \left| \begin{array}{ccc} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{array} \right| \] ### Step 4: Area of Equilateral Triangle The area \( \Delta \) of an equilateral triangle with side length \( a \) is given by: \[ \Delta = \frac{\sqrt{3}}{4} a^2 \] ### Step 5: Substitute Area into the Equation Substituting the area into the equation from Step 3: \[ 4 \left( \frac{\sqrt{3}}{4} a^2 \right) = \left| \begin{array}{ccc} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{array} \right| \] This simplifies to: \[ \sqrt{3} a^2 = \left| \begin{array}{ccc} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{array} \right| \] ### Step 6: Square Both Sides Squaring both sides gives: \[ 3a^4 = \left| \begin{array}{ccc} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{array} \right|^2 \] ### Conclusion Thus, we have shown that: \[ \left| \begin{array}{ccc} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{array} \right| = \sqrt{3} a^2 \] and squaring both sides leads to: \[ \left| \begin{array}{ccc} x_1 & y_1 & 2 \\ x_2 & y_2 & 2 \\ x_3 & y_3 & 2 \end{array} \right|^2 = 3a^4 \]

To prove that the determinant \( |(x_1, y_1, 2), (x_2, y_2, 2), (x_3, y_3, 2)| \) is equal to \( 3a^4 \) for the vertices of an equilateral triangle with each side equal to \( a \), we can follow these steps: ### Step 1: Area of Triangle The area \( \Delta \) of triangle \( ABC \) with vertices \( A(x_1, y_1) \), \( B(x_2, y_2) \), and \( C(x_3, y_3) \) can be expressed using the determinant: \[ \Delta = \frac{1}{2} \left| \begin{array}{ccc} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|74 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If A(x_1, y_1),B(x_2, y_2)a n dC(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |(x_1,y_1, 2),(x_2,y_2, 2),(x_3,y_3, 2)|^2=3a^4

If A(x_1, y_1),B(x_2, y_2) and C(x_3,y_3) are vertices of an equilateral triangle whose each side is equal to a , then prove that |[x_1,y_1, 2],[x_2,y_2, 2],[x_3,y_3, 2]|^2=3a^4

If A(x_(1), y_(1)), B(x_(2), y_(2)) and C (x_(3), y_(3)) are the vertices of a Delta ABC and (x, y) be a point on the internal bisector of angle A, then prove that b|(x,y,1),(x_(1),y_(1),1),(x_(2),y_(2),1)|+c|(x,y,1),(x_(1),y_(1),1),(x_(3),y_(3),1)|=0 where, AC = b and AB = c.

An equilateral triangle has each of its sides of length 6 cm. If (x_(1),y_(1)), (x_(2),y_(2)) & (x_(3),y_(3)) are the verticles, then the value of the determinant |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^(2) is equal to :

An equilateral triangle has each side to a. If the coordinates of its vertices are (x_(1), y_(1)), (x_(2), y_(2)) and (x_(3), y_(3)) then the square of the determinat |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)| equals

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

If A(x_1, y_1), B(x_2, y_2), C(x_3, y_3) are the vertices of a DeltaABC and (x, y) be a point on the median through A . Show that : |(x, y, 1), (x_1, y_1, 1), (x_2, y_2, 1)| + |(x, y, 1), (x_1, y_1, 1), (x_3, y_3, 1)|=0

If x_(1), x_(2), x_(3) as well as y_(1), y_(2), y_(3) are in GP, with the same common ratio, then the points (x_(1),y_(1)), (x_(2),y_(2)) and (x_(3), y_(3))

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

An equilateral triangle has each of its sides of length 4 cm. If (x_(r),y_(r)) (r=1,2,3) are its vertices the value of |{:(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1):}|^2

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If A (x(1), y(1)), B (x(2), y(2)) and C (x(3), y(3)) are vertices of a...

    Text Solution

    |

  2. STATEMENT-1: The lines a(1)x+b(1)y+c(1)=0a(2)x+b(2)y+c(2)=0,a(3)x+b(3)...

    Text Solution

    |

  3. If D =|{:(1,1,1),(1,1+x,1),(1,1,1+y):}|"for" " "xne0,yne0 then D is

    Text Solution

    |

  4. Use properties of determinants to solve for x: |{:(,x+a,b,c),(,c,x+b,a...

    Text Solution

    |

  5. |(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

    Text Solution

    |

  6. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  7. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  8. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  9. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  10. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  11. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  12. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  13. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  14. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  15. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  16. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  17. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  18. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  19. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  20. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  21. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |