Home
Class 11
MATHS
The value of the determinant |(x+2,x+3,...

The value of the determinant `|(x+2,x+3,x+5),(x+4,x+6,x+9),(x+8,x+11,x+15)|` is

A

2

B

`-2`

C

3

D

`x -1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15 \end{vmatrix} \] we can perform row operations to simplify the determinant. ### Step 1: Subtract Row 1 from Row 2 and Row 3 We will perform the following operations: - \( R_2 \leftarrow R_2 - R_1 \) - \( R_3 \leftarrow R_3 - R_2 \) After performing these operations, we have: \[ R_1 = (x+2, x+3, x+5) \] \[ R_2 = ( (x+4)-(x+2), (x+6)-(x+3), (x+9)-(x+5) ) = (2, 3, 4) \] \[ R_3 = ( (x+8)-(x+4), (x+11)-(x+6), (x+15)-(x+9) ) = (4, 5, 6) \] Thus, the determinant now looks like: \[ D = \begin{vmatrix} x+2 & x+3 & x+5 \\ 2 & 3 & 4 \\ 4 & 5 & 6 \end{vmatrix} \] ### Step 2: Subtract Row 2 from Row 1 and Row 3 Next, we will perform the following operations: - \( R_1 \leftarrow R_1 - R_2 \) - \( R_3 \leftarrow R_3 - R_2 \) After performing these operations, we have: \[ R_1 = ( (x+2)-2, (x+3)-3, (x+5)-4 ) = (x, x, x+1) \] \[ R_3 = ( (4-2), (5-3), (6-4) ) = (2, 2, 2) \] Thus, the determinant now looks like: \[ D = \begin{vmatrix} x & x & x+1 \\ 2 & 3 & 4 \\ 2 & 2 & 2 \end{vmatrix} \] ### Step 3: Factor out common elements We can factor out a 2 from Row 3: \[ D = 2 \cdot \begin{vmatrix} x & x & x+1 \\ 2 & 3 & 4 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 4: Perform column operations Now, we will perform the following operations: - \( C_2 \leftarrow C_2 - C_1 \) - \( C_3 \leftarrow C_3 - C_2 \) After performing these operations, we have: \[ D = 2 \cdot \begin{vmatrix} x & 0 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 0 \end{vmatrix} \] ### Step 5: Expand the determinant Now we can expand the determinant along the first column: \[ D = 2 \cdot \left( x \cdot \begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix} \right) = 2 \cdot x \cdot (1 \cdot 0 - 1 \cdot 0) = 0 \] ### Final Result Thus, the value of the determinant is: \[ D = 0 \]

To find the value of the determinant \[ D = \begin{vmatrix} x+2 & x+3 & x+5 \\ x+4 & x+6 & x+9 \\ x+8 & x+11 & x+15 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Find the value of the determinant = |(2, 3, 4) ,(5, 6, 8),( 6x,9x, 12 x)| .

Find the value of the determinant = |(2, 3, 4),( 5, 6, 8),( 6x,9x ,12 x)|

The value of the determinant |(x, x+a, x+2a),(x,x+2a, x+4a),(x, x+3a, x+6a)| is (A) 0 (B) a^3-x^3 (C) x^3-a^3 (D) (x-a)^3

Column I, Column II The value of the determinant |x+2x+3x+5x+4x+6x+9x+8x+11 x+15| is, p. 1 If one of the roots of the equation |7 6x^2-13 2x^2-13 2x^2-13 3 7|=0i sx+2, then sum of all other five roots is, q. -6 The value of |sqrt(6)2i3+sqrt(6)sqrt(12)sqrt(3)+sqrt(8)i3sqrt(2)+sqrt(6)isqrt(18)sqrt(2)+sqrt(12)isqrt(27)+2i| is, r. 2 If f(theta)=|cos^2thetacosthetas intheta-s inthetacosthetasin^2thetacosthetas intheta-costheta0|=t h e nf(pi//3) , s. -2

Write the value of the determinant |[2, 3, 4], [5, 6, 8], [6x,9x,12x]| .

Write the value of the determinant |[2, 3, 4],[ 5, 6, 8],[ 6x,9x, 12 x]|

Write the value of the determinant |[2, 3, 4],[ 5, 6 ,8],[ 6x,9x, 12 x]|

Determine the values of x for which the matrix A= [(x+1,-3 ,4),(-5,x+2, 2) ,(4 ,1,x-6)] is singular.

value of |(2,3,4),(5,6,8),(6x,9x,12x)|

Find the co-efficient of x in the expansion of the determinant |{:((1+x)^2,(1+x)^4,(1+x)^6),((1+x)^3,(1+x)^6,(1+x)^9),((1+x)^4,(1+x)^8,(1+x)^12):}|

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. If m is a positive integer and Dr=|2r-1\ ^m Cr1m^2-1 2^m m+1s in^2(...

    Text Solution

    |

  2. if x,y ,z are in A.P. then the value of the determinant |{:(a+2,,a+...

    Text Solution

    |

  3. The value of the determinant |(x+2,x+3,x+5),(x+4,x+6,x+9),(x+8,x+11,x...

    Text Solution

    |

  4. If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the va...

    Text Solution

    |

  5. If f(x)|a-1 0a x a-1a x^2a x a|, using properties of determinants, fin...

    Text Solution

    |

  6. If a , b , c are real numbers, prove that |[a,b,c],[b,c,a],[c,a,b]|=-(...

    Text Solution

    |

  7. If omegais an imaginary cube root of unity, then the value of the det...

    Text Solution

    |

  8. If |[x^n, x^(n+2), x^(n+3)], [y^n, y^(n+2), y^(n+3)], [z^n, z^(n+2), z...

    Text Solution

    |

  9. Let "f(x)"=|{:(1,x,x+1),(2x,x(x-1),(x+1)x),(3x(x-1),x(x-1)(x-2),(x+1)x...

    Text Solution

    |

  10. Given a(i)^(2) + b(i)^(2) + c(i)^(2) = 1, i = 1, 2, 3 and a(i) a(j) + ...

    Text Solution

    |

  11. If alpha,beta and gamma are such that alpha+beta+gamma=0, then |(1,cos...

    Text Solution

    |

  12. " If " f(alpha , beta) = |{:(cos alpha ,,-sin alpha,,1),(sin alpha,,c...

    Text Solution

    |

  13. " If " f(alpha , beta) = |{:(cos alpha ,,-sin alpha,,1),(sin alpha,,c...

    Text Solution

    |

  14. Let D(r) = |(a,2^(r),2^(16) -1),(b,3(4^(r)),2(4^(16) -1)),(c,7(8^(r)),...

    Text Solution

    |

  15. If Delta = |(cos (alpha(1) - beta(1)),cos (alpha(1) - beta(2)),cos (al...

    Text Solution

    |

  16. The determinant |{:(y^(2),,-xy,,x^(2)),(a,,b ,,c),(a',,b',,c'):}| is ...

    Text Solution

    |

  17. If |[p,q-y,r-z],[p-x,q,r-z],[p-x,q-y,r]|=0 find the value of p/x+q/y+r...

    Text Solution

    |

  18. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  19. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  20. Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)],...

    Text Solution

    |