Home
Class 11
MATHS
If Delta = |(cos (alpha(1) - beta(1)),co...

If `Delta = |(cos (alpha_(1) - beta_(1)),cos (alpha_(1) - beta_(2)),cos (alpha_(1) - beta_(3))),(cos (alpha_(2) - beta_(1)),cos (alpha_(2) - beta_(2)),cos (alpha_(2) - beta_(3))),(cos (alpha_(3) - beta_(1)),cos (alpha_(3) - beta_(2)),cos (alpha_(3) - beta_(3)))|" then " Delta` equals

A

`cos alpha_(1) cos alpha_(2) cos alpha_(3) cos beta_(1) cos beta_(2) cos beta_(3)`

B

`cos alpha_(1) + cos alpha_(2) + cos alpha_(3) + cos beta_(1) + cos beta_(2) + cos beta_(3)`

C

`cos (alpha_(1) - beta_(1)) cos (alpha_(2) - beta_(2)) cos (alpha_(3) - beta_(3))`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant given by \[ \Delta = \begin{vmatrix} \cos(\alpha_1 - \beta_1) & \cos(\alpha_1 - \beta_2) & \cos(\alpha_1 - \beta_3) \\ \cos(\alpha_2 - \beta_1) & \cos(\alpha_2 - \beta_2) & \cos(\alpha_2 - \beta_3) \\ \cos(\alpha_3 - \beta_1) & \cos(\alpha_3 - \beta_2) & \cos(\alpha_3 - \beta_3) \end{vmatrix} \] we can use the trigonometric identity for cosine of a difference: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] ### Step 1: Expand the determinant using the cosine difference identity Using the identity, we can rewrite each entry of the determinant: - For the first row: - \(\cos(\alpha_1 - \beta_1) = \cos \alpha_1 \cos \beta_1 + \sin \alpha_1 \sin \beta_1\) - \(\cos(\alpha_1 - \beta_2) = \cos \alpha_1 \cos \beta_2 + \sin \alpha_1 \sin \beta_2\) - \(\cos(\alpha_1 - \beta_3) = \cos \alpha_1 \cos \beta_3 + \sin \alpha_1 \sin \beta_3\) - For the second row: - \(\cos(\alpha_2 - \beta_1) = \cos \alpha_2 \cos \beta_1 + \sin \alpha_2 \sin \beta_1\) - \(\cos(\alpha_2 - \beta_2) = \cos \alpha_2 \cos \beta_2 + \sin \alpha_2 \sin \beta_2\) - \(\cos(\alpha_2 - \beta_3) = \cos \alpha_2 \cos \beta_3 + \sin \alpha_2 \sin \beta_3\) - For the third row: - \(\cos(\alpha_3 - \beta_1) = \cos \alpha_3 \cos \beta_1 + \sin \alpha_3 \sin \beta_1\) - \(\cos(\alpha_3 - \beta_2) = \cos \alpha_3 \cos \beta_2 + \sin \alpha_3 \sin \beta_2\) - \(\cos(\alpha_3 - \beta_3) = \cos \alpha_3 \cos \beta_3 + \sin \alpha_3 \sin \beta_3\) ### Step 2: Substitute into the determinant Now, substituting these expansions into the determinant, we have: \[ \Delta = \begin{vmatrix} \cos \alpha_1 \cos \beta_1 + \sin \alpha_1 \sin \beta_1 & \cos \alpha_1 \cos \beta_2 + \sin \alpha_1 \sin \beta_2 & \cos \alpha_1 \cos \beta_3 + \sin \alpha_1 \sin \beta_3 \\ \cos \alpha_2 \cos \beta_1 + \sin \alpha_2 \sin \beta_1 & \cos \alpha_2 \cos \beta_2 + \sin \alpha_2 \sin \beta_2 & \cos \alpha_2 \cos \beta_3 + \sin \alpha_2 \sin \beta_3 \\ \cos \alpha_3 \cos \beta_1 + \sin \alpha_3 \sin \beta_1 & \cos \alpha_3 \cos \beta_2 + \sin \alpha_3 \sin \beta_2 & \cos \alpha_3 \cos \beta_3 + \sin \alpha_3 \sin \beta_3 \end{vmatrix} \] ### Step 3: Factor the determinant Notice that the determinant can be expressed as a product of two separate determinants: \[ \Delta = \begin{vmatrix} \cos \alpha_1 & \cos \alpha_2 & \cos \alpha_3 \\ \sin \alpha_1 & \sin \alpha_2 & \sin \alpha_3 \\ 0 & 0 & 0 \end{vmatrix} \cdot \begin{vmatrix} \cos \beta_1 & \cos \beta_2 & \cos \beta_3 \\ \sin \beta_1 & \sin \beta_2 & \sin \beta_3 \\ 0 & 0 & 0 \end{vmatrix} \] ### Step 4: Evaluate the determinant Since both determinants have a row of zeros, we find that: \[ \Delta = 0 \] ### Conclusion Thus, the value of the determinant \(\Delta\) is: \[ \Delta = 0 \]

To solve the determinant given by \[ \Delta = \begin{vmatrix} \cos(\alpha_1 - \beta_1) & \cos(\alpha_1 - \beta_2) & \cos(\alpha_1 - \beta_3) \\ \cos(\alpha_2 - \beta_1) & \cos(\alpha_2 - \beta_2) & \cos(\alpha_2 - \beta_3) \\ \cos(\alpha_3 - \beta_1) & \cos(\alpha_3 - \beta_2) & \cos(\alpha_3 - \beta_3) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Prove that |{:(a_(1)alpha_(1)+b_(1)beta_(1),a_(1)alpha_(2)+b_(1)beta_(2),a_(1)alpha_(3)+b_(1)beta_(3)),(a_(2)alpha_(1)+b_(2)beta_(1),a_(2)alpha_(2)+b_(2)beta_(2),a_(2)alpha_(3)+b_(2)beta_(3)),(a_(3)alpha_(1)+b_(3)beta_(1),a_(3)alpha_(2)+b_(3)beta_(2),a_(3)alpha_(3)+b_(3)beta_(3)):}| =0.

Prove that : (cos alpha + cos beta)^2 + (sin alpha + sin beta)^2 = 4 cos^2 ((alpha-beta)/(2))

|[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos alpha, cos beta, 1]|

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

The value of the determinant Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)| , is

Sum the series cosalpha+^nC_1 cos(alpha+beta)+^nC_2 cos (alpha+2beta)+…+cos(alpha+nbeta)

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta then i is

f(alpha,beta) = cos^2(alpha)+ cos^2(alpha+beta)- 2 cosalpha cosbeta cos(alpha+beta) is

The expression cos^2(alpha+beta)+cos^2(alpha-beta)-cos2alphacos2beta is

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. " If " f(alpha , beta) = |{:(cos alpha ,,-sin alpha,,1),(sin alpha,,c...

    Text Solution

    |

  2. Let D(r) = |(a,2^(r),2^(16) -1),(b,3(4^(r)),2(4^(16) -1)),(c,7(8^(r)),...

    Text Solution

    |

  3. If Delta = |(cos (alpha(1) - beta(1)),cos (alpha(1) - beta(2)),cos (al...

    Text Solution

    |

  4. The determinant |{:(y^(2),,-xy,,x^(2)),(a,,b ,,c),(a',,b',,c'):}| is ...

    Text Solution

    |

  5. If |[p,q-y,r-z],[p-x,q,r-z],[p-x,q-y,r]|=0 find the value of p/x+q/y+r...

    Text Solution

    |

  6. The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,...

    Text Solution

    |

  7. The value of a for which system of equations , a^3x+(a+1)^3y+(a+2)^3z=...

    Text Solution

    |

  8. Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)],...

    Text Solution

    |

  9. Let |(x,2,x),(x^2,x,6),(x,x,6)|=A x^4+B x^3+C x^2+D x+Edot Then the va...

    Text Solution

    |

  10. If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,...

    Text Solution

    |

  11. If Dk=|1nn2k n^2+n+2n^2+n2k-1n^2n^2+n+2|a n d sum(k=1)^n Dk=48 ,t h e...

    Text Solution

    |

  12. Let |[x^2+3x,x-1,x+3],[x+1,-2x,x-4],[x-3,x+4, 3x]|=a x^4+b x^3+c x^2+e...

    Text Solution

    |

  13. If A = int(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int(1)^("cosec"the...

    Text Solution

    |

  14. If I(n) = |(1,k,k),(2n,k^(2) + k + 1,k^(2) + k),(2n -1,k^(2) ,k^(2) + ...

    Text Solution

    |

  15. If x is a positive integer, then |(x!,(x +1)!,(x +2)!),((x +1)!,(x +2)...

    Text Solution

    |

  16. If f(x) = |(x + lamda,x,x),(x,x + lamda,x),(x,x,x + lamda)|, " then " ...

    Text Solution

    |

  17. Find the value of the determinant |(bc,ca, ab),( p, q, r),(1, 1, 1)|,w...

    Text Solution

    |

  18. The value of the determinant |(sintheta, costheta, sin2theta) , (sin(t...

    Text Solution

    |

  19. If a , b , c are distinct, then the value of x satisfying |0x^2-a x^3-...

    Text Solution

    |

  20. If the determinant |(a ,b,2aalpha+3b),(b, c,2balpha+3c),(2aalpha+3b,2b...

    Text Solution

    |