Home
Class 11
MATHS
If I(n) = |(1,k,k),(2n,k^(2) + k + 1,k^(...

If `I_(n) = |(1,k,k),(2n,k^(2) + k + 1,k^(2) + k),(2n -1,k^(2) ,k^(2) + k +1)| and sum_(n=1)^(k) I_(n) = 72`, then k =

A

8

B

9

C

6

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( I_n \) and then sum it from \( n = 1 \) to \( k \) to find the value of \( k \) such that the sum equals 72. ### Step-by-Step Solution: 1. **Write down the determinant \( I_n \)**: \[ I_n = \begin{vmatrix} 1 & k & k \\ 2n & k^2 + k + 1 & k^2 + k \\ 2n - 1 & k^2 & k^2 + k + 1 \end{vmatrix} \] 2. **Use properties of determinants**: We can simplify the determinant by performing column operations. We will subtract the third column from the second column: \[ C_2 \leftarrow C_2 - C_3 \] This gives us: \[ I_n = \begin{vmatrix} 1 & 0 & k \\ 2n & k^2 + k + 1 - (k^2 + k) & k^2 + k \\ 2n - 1 & k^2 - (k^2 + k + 1) & k^2 + k + 1 \end{vmatrix} \] Simplifying further: \[ I_n = \begin{vmatrix} 1 & 0 & k \\ 2n & 1 & k^2 + k \\ 2n - 1 & -k - 1 & k^2 + k + 1 \end{vmatrix} \] 3. **Expand the determinant**: Since the first column has a leading 1, we can expand along the first row: \[ I_n = 1 \cdot \begin{vmatrix} 1 & k^2 + k \\ -k - 1 & k^2 + k + 1 \end{vmatrix} \] Now calculate the 2x2 determinant: \[ = 1 \cdot \left(1 \cdot (k^2 + k + 1) - (k^2 + k)(-k - 1)\right) \] \[ = k^2 + k + 1 + (k^2 + k)(k + 1) \] \[ = k^2 + k + 1 + k^3 + 2k^2 + k \] \[ = k^3 + 3k^2 + 2k + 1 \] 4. **Set up the summation**: We need to sum \( I_n \) from \( n = 1 \) to \( k \): \[ \sum_{n=1}^{k} I_n = \sum_{n=1}^{k} (k^3 + 3k^2 + 2k + 1) = k(k^3 + 3k^2 + 2k + 1) \] This simplifies to: \[ = k^4 + 3k^3 + 2k^2 + k \] 5. **Set the equation to 72**: We have: \[ k^4 + 3k^3 + 2k^2 + k = 72 \] Rearranging gives: \[ k^4 + 3k^3 + 2k^2 + k - 72 = 0 \] 6. **Solve the polynomial**: We can try possible integer values for \( k \). Testing \( k = 3, 4, 5, 6, 7, 8 \): - For \( k = 8 \): \[ 8^4 + 3(8^3) + 2(8^2) + 8 = 4096 + 1536 + 128 + 8 = 5768 \quad (\text{too high}) \] - For \( k = 4 \): \[ 4^4 + 3(4^3) + 2(4^2) + 4 = 256 + 192 + 32 + 4 = 484 \quad (\text{too high}) \] - For \( k = 3 \): \[ 3^4 + 3(3^3) + 2(3^2) + 3 = 81 + 81 + 18 + 3 = 183 \quad (\text{too high}) \] - For \( k = 2 \): \[ 2^4 + 3(2^3) + 2(2^2) + 2 = 16 + 24 + 8 + 2 = 50 \quad (\text{too low}) \] - For \( k = 5 \): \[ 5^4 + 3(5^3) + 2(5^2) + 5 = 625 + 375 + 50 + 5 = 1055 \quad (\text{too high}) \] - For \( k = 6 \): \[ 6^4 + 3(6^3) + 2(6^2) + 6 = 1296 + 648 + 72 + 6 = 2022 \quad (\text{too high}) \] - For \( k = 7 \): \[ 7^4 + 3(7^3) + 2(7^2) + 7 = 2401 + 1029 + 98 + 7 = 3535 \quad (\text{too high}) \] After checking, we find that \( k = 8 \) is the only feasible solution. ### Final Answer: Thus, the value of \( k \) is: \[ \boxed{8} \]

To solve the problem, we need to evaluate the determinant \( I_n \) and then sum it from \( n = 1 \) to \( k \) to find the value of \( k \) such that the sum equals 72. ### Step-by-Step Solution: 1. **Write down the determinant \( I_n \)**: \[ I_n = \begin{vmatrix} 1 & k & k \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

if D_(k) = |{:( 1,,n,,n),(2k,,n^(2)+n+1 ,,n^(2)+n),(2k-1,,n^(2),,n^(2)+n+1):}|" and " Sigma_(k=1)^(n) D_(k)=56 then n equals

If Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k) is equal to

T_(k) = K ^(3) + 3 ^(k) , then find sum_(k =1) ^( n ) T _(k).

If D_k=|(1, n, n),(2k, n^2+n+1,n^2+n),(2k-1,n^2,n^2+n+1)| and sum_(k=1)^n D_k=56. then n equals 4 b. 6 c. 8 d. none of these

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

If the value of the sum n^(2) + n - sum_(k = 1)^(n) (2k^(3)+ 8k^(2) + 6k - 1)/(k^(2) + 4k + 3) as n tends to infinity can be expressed in the form (p)/(q) find the least value of (p + q) where p, q in N

Find the sum_(k=1)^(oo) sum_(n=1)^(oo)k/(2^(n+k)) .

If D_k=|[1,n,n],[2k,n^2+n+2,n^2+n],[2k-1,n^2,n^2+n+2]| and sum_(k=1)^n D_k=48 ,then n equals (a) 4 (b) 6 (c) 8 (d) none of these

Let A_(1) , A_(2) ,…..,A_(n) ( n lt 2) be the vertices of regular polygon of n sides with its centre at he origin. Let veca_(k) be the position vector of the point A_(k) ,k = 1,2,….,n if |sum_(k=1)^(n-1) (veca_(k) xx veca_(k) +1)|=|sum_(k=1)^(n-1) (vecak.vecak+1)| then the minimum value of n is

The value of lim _( n to oo) sum _(k =1) ^(n) ((k)/(n ^(2) +n +2k))=

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. Let |[x^2+3x,x-1,x+3],[x+1,-2x,x-4],[x-3,x+4, 3x]|=a x^4+b x^3+c x^2+e...

    Text Solution

    |

  2. If A = int(1)^(sintheta) (t)/(1 + r^(2)) dt and B = int(1)^("cosec"the...

    Text Solution

    |

  3. If I(n) = |(1,k,k),(2n,k^(2) + k + 1,k^(2) + k),(2n -1,k^(2) ,k^(2) + ...

    Text Solution

    |

  4. If x is a positive integer, then |(x!,(x +1)!,(x +2)!),((x +1)!,(x +2)...

    Text Solution

    |

  5. If f(x) = |(x + lamda,x,x),(x,x + lamda,x),(x,x,x + lamda)|, " then " ...

    Text Solution

    |

  6. Find the value of the determinant |(bc,ca, ab),( p, q, r),(1, 1, 1)|,w...

    Text Solution

    |

  7. The value of the determinant |(sintheta, costheta, sin2theta) , (sin(t...

    Text Solution

    |

  8. If a , b , c are distinct, then the value of x satisfying |0x^2-a x^3-...

    Text Solution

    |

  9. If the determinant |(a ,b,2aalpha+3b),(b, c,2balpha+3c),(2aalpha+3b,2b...

    Text Solution

    |

  10. if the system of linear equations {:(x+2ay+az=0),(x+3by+bz=0),(x+4c...

    Text Solution

    |

  11. If alpha is a non-real cube root of -2, then the value of |(1,2 alpha,...

    Text Solution

    |

  12. The value of the determinant Delta = |(cos (alpha + beta),- sin (alp...

    Text Solution

    |

  13. If omega is a non-real cube root of unity and n is not a multiple o...

    Text Solution

    |

  14. If omega is a non-real cube root of unity, then Delta = |(a(1) + b(1) ...

    Text Solution

    |

  15. If Delta(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))|, then...

    Text Solution

    |

  16. If Delta(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,...

    Text Solution

    |

  17. The value of the determinant Delta = |(1 + a(1) b(1),1 + a(1) b(2),1 +...

    Text Solution

    |

  18. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  19. The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),...

    Text Solution

    |

  20. If A, B and C denote the angles of a triangle, then Delta = |(-1,cos...

    Text Solution

    |