Home
Class 11
MATHS
The value of the determinant Delta = |...

The value of the determinant
`Delta = |(cos (alpha + beta),- sin (alpha + beta),cos 2 beta),(sin alpha,cos alpha,sin beta),(- cos alpha,sin alpha,- cos beta)|`, is

A

`cos^(2) alpha`

B

`sin^(2) alpha`

C

`sin (alpha - beta)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin(\alpha) & \cos(\alpha) & \sin(\beta) \\ -\cos(\alpha) & \sin(\alpha) & -\cos(\beta) \end{vmatrix} \] we will apply properties of determinants to simplify the calculation. ### Step 1: Apply Row Operations We can simplify the first row by adding appropriate multiples of the second and third rows to it. Specifically, we will perform the following operations: - Replace Row 1 with Row 1 + \(\sin(\beta) \cdot \text{Row 2}\) + \(\cos(\beta) \cdot \text{Row 3}\). ### Step 2: Calculate New Elements of Row 1 1. First element of Row 1: \[ \cos(\alpha + \beta) + \sin(\beta) \cdot \sin(\alpha) + \cos(\beta) \cdot (-\cos(\alpha)) \] This simplifies to: \[ \cos(\alpha + \beta) + \sin(\beta) \sin(\alpha) - \cos(\beta) \cos(\alpha) \] Using the cosine addition formula, we have: \[ \cos(\alpha + \beta) - \cos(\alpha + \beta) = 0 \] 2. Second element of Row 1: \[ -\sin(\alpha + \beta) + \sin(\beta) \cdot \cos(\alpha) + \cos(\beta) \cdot \sin(\alpha) \] This simplifies to: \[ -\sin(\alpha + \beta) + \sin(\beta) \cos(\alpha) + \cos(\beta) \sin(\alpha) \] Using the sine addition formula, we have: \[ -\sin(\alpha + \beta) + \sin(\alpha + \beta) = 0 \] 3. Third element of Row 1: \[ \cos(2\beta) + \sin(\beta) \cdot \sin(\beta) + \cos(\beta) \cdot (-\cos(\beta)) \] This simplifies to: \[ \cos(2\beta) + \sin^2(\beta) - \cos^2(\beta) \] Using the identity \(\cos(2\beta) = \cos^2(\beta) - \sin^2(\beta)\), we find: \[ \cos(2\beta) - \cos(2\beta) = 0 \] ### Step 3: Form the New Determinant After performing the row operations, Row 1 becomes: \[ \begin{pmatrix} 0 & 0 & 0 \end{pmatrix} \] Thus, the determinant can be rewritten as: \[ \Delta = \begin{vmatrix} 0 & 0 & 0 \\ \sin(\alpha) & \cos(\alpha) & \sin(\beta) \\ -\cos(\alpha) & \sin(\alpha) & -\cos(\beta) \end{vmatrix} \] ### Step 4: Evaluate the Determinant Since the first row consists entirely of zeros, the value of the determinant is: \[ \Delta = 0 \] ### Conclusion The value of the determinant \(\Delta\) is \(0\). ---

To find the value of the determinant \[ \Delta = \begin{vmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) & \cos(2\beta) \\ \sin(\alpha) & \cos(\alpha) & \sin(\beta) \\ -\cos(\alpha) & \sin(\alpha) & -\cos(\beta) \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-

Let f(alpha, beta) = =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| if i =int_(-pi//2)^(pi//2) cos ^(2)beta(f(0,beta)+f(0,(pi)/(2)-beta))dbeta then i is

Let f(alpha, beta) =|(cos (alpha + beta), -sin (alpha + beta), cos 2beta),(sin alpha, cos alpha, sin beta),(-cos alpha, sin alpha, cos beta)| The value of l=int_(0)^(pi//2)e^(beta)(f(0,0)+f((pi)/(2),beta)+f((3pi)/(2),(pi)/(2)-beta))dbeta is

If cos(alpha+beta)=0 then sin(alpha+2beta)=

|[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos alpha, cos beta, 1]|

Prove that 2 sin^2 beta + 4 cos(alpha + beta) sin alpha sin beta + cos 2(alpha + beta) = cos 2alpha

Prove that (sin alpha cos beta + cos alpha sin beta) ^(2) + (cos alpha coa beta - sin alpha sin beta) ^(2) =1.

If f(alpha,beta)=|(cos alpha,-sin alpha,1),(sin alpha,cos alpha,1),(cos(alpha+beta),-sin(alpha+beta),1)|, then

Evaluate : |{:( 0, sin alpha , - cos alpha ), ( - sin alpha , 0 , sin beta) , (cos alpha , -sin beta , 0):}|

If ( cos x - cos alpha)/(cos x - cos beta) = ( sin^2 alpha cos beta)/(sin^2 beta cos alpha) then cos x =

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. if the system of linear equations {:(x+2ay+az=0),(x+3by+bz=0),(x+4c...

    Text Solution

    |

  2. If alpha is a non-real cube root of -2, then the value of |(1,2 alpha,...

    Text Solution

    |

  3. The value of the determinant Delta = |(cos (alpha + beta),- sin (alp...

    Text Solution

    |

  4. If omega is a non-real cube root of unity and n is not a multiple o...

    Text Solution

    |

  5. If omega is a non-real cube root of unity, then Delta = |(a(1) + b(1) ...

    Text Solution

    |

  6. If Delta(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))|, then...

    Text Solution

    |

  7. If Delta(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,...

    Text Solution

    |

  8. The value of the determinant Delta = |(1 + a(1) b(1),1 + a(1) b(2),1 +...

    Text Solution

    |

  9. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  10. The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),...

    Text Solution

    |

  11. If A, B and C denote the angles of a triangle, then Delta = |(-1,cos...

    Text Solution

    |

  12. If X,Y and Z are opositive number such that Y and Z have respectively ...

    Text Solution

    |

  13. If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b]...

    Text Solution

    |

  14. If C = 2 cos theta, then the value of the determinant Delta = |(C,1,0)...

    Text Solution

    |

  15. If x^a y^b=e^m , x^c y^d=e^n ,Delta1=|(m,b),(n,d)|,and Delta2 =|(a,m),...

    Text Solution

    |

  16. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  17. Let a , ba n dc detnote the sides B C ,C Aa n dA B respectively of A ...

    Text Solution

    |

  18. If omega is a complex cube root of unity, then a root of the equation ...

    Text Solution

    |

  19. Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}| is indepe...

    Text Solution

    |

  20. If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite s...

    Text Solution

    |