Home
Class 11
MATHS
If omega is a non-real cube root of unit...

If `omega` is a non-real cube root of unity, then `Delta = |(a_(1) + b_(1) omega,a_(1) omega^(2) + b_(1),a_(1) + b_(1) + c_(1) omega^(2)),(a_(2) + b_(2) omega,a_(2) omega^(2) + b_(2),a_(2) + b_(2) + c_(2) omega^(2)),(a_(3) + b_(3) omega,a_(3) omega^(2) + b_(3),a_(3) + b_(3) + c_(3) omega^(2))|` is equal to

A

`-1`

B

0

C

`-omega^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given the matrix formed by the expressions involving the non-real cube root of unity, denoted as \( \omega \). ### Step-by-Step Solution: 1. **Understanding the Cube Root of Unity**: - The non-real cube roots of unity are given by \( \omega = e^{2\pi i / 3} \) and \( \omega^2 = e^{4\pi i / 3} \). - They satisfy the equation \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). 2. **Setting Up the Determinant**: - The determinant \( \Delta \) is given by: \[ \Delta = \begin{vmatrix} a_1 + b_1 \omega & a_1 \omega^2 + b_1 & a_1 + b_1 + c_1 \omega^2 \\ a_2 + b_2 \omega & a_2 \omega^2 + b_2 & a_2 + b_2 + c_2 \omega^2 \\ a_3 + b_3 \omega & a_3 \omega^2 + b_3 & a_3 + b_3 + c_3 \omega^2 \end{vmatrix} \] 3. **Column Operations**: - We can multiply the first column by \( \omega^2 \): \[ \text{First column becomes: } (a_1 \omega^2 + b_1, a_2 \omega^2 + b_2, a_3 \omega^2 + b_3) \] - Since \( \omega^3 = 1 \), we can replace \( b_1 \omega^3 \) with \( b_1 \). 4. **Resulting Matrix**: - The matrix now looks like: \[ \begin{vmatrix} a_1 \omega^2 + b_1 & a_1 \omega^2 + b_1 & a_1 + b_1 + c_1 \omega^2 \\ a_2 \omega^2 + b_2 & a_2 \omega^2 + b_2 & a_2 + b_2 + c_2 \omega^2 \\ a_3 \omega^2 + b_3 & a_3 \omega^2 + b_3 & a_3 + b_3 + c_3 \omega^2 \end{vmatrix} \] 5. **Identical Columns**: - Notice that the first two columns of the determinant are now identical: \[ \begin{vmatrix} a_1 \omega^2 + b_1 & a_1 \omega^2 + b_1 & a_1 + b_1 + c_1 \omega^2 \\ a_2 \omega^2 + b_2 & a_2 \omega^2 + b_2 & a_2 + b_2 + c_2 \omega^2 \\ a_3 \omega^2 + b_3 & a_3 \omega^2 + b_3 & a_3 + b_3 + c_3 \omega^2 \end{vmatrix} \] 6. **Conclusion**: - Since two columns of the determinant are identical, the value of the determinant is zero: \[ \Delta = 0 \] ### Final Answer: \[ \Delta = 0 \]

To solve the problem, we need to evaluate the determinant given the matrix formed by the expressions involving the non-real cube root of unity, denoted as \( \omega \). ### Step-by-Step Solution: 1. **Understanding the Cube Root of Unity**: - The non-real cube roots of unity are given by \( \omega = e^{2\pi i / 3} \) and \( \omega^2 = e^{4\pi i / 3} \). - They satisfy the equation \( \omega^3 = 1 \) and \( 1 + \omega + \omega^2 = 0 \). ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is

If omega is an imaginary cube root of unity, then the value of |(a,b omega^(2),a omega),(b omega,c,b omega^(2)),(c omega^(2),a omega,c)| , is

If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

If omega is a cube root of unity and /_\ = |(1, 2 omega), (omega, omega^2)| , then /_\ ^2 is equal to (A) - omega (B) omega (C) 1 (D) omega^2

If 1, omega, omega^(2) are the cube roots of unity, prove that (1 + omega)^(3)-(1 + omega^(2))^(3)=0

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

If 1, omega,omega^(2) are cube roots of unity then the value of (2+2omega-3omega^(2))^(3) is

If 1, omega, omega^(2) are three cube roots of unity, show that (a + omega b+ omega^(2)c) (a + omega^(2)b+ omega c)= a^(2) + b^(2) + c^(2)- ab- bc - ca

Prove the following (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) + (a + b omega + c omega^(2))/(b + c omega + a omega^(2)) = -1

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. The value of the determinant Delta = |(cos (alpha + beta),- sin (alp...

    Text Solution

    |

  2. If omega is a non-real cube root of unity and n is not a multiple o...

    Text Solution

    |

  3. If omega is a non-real cube root of unity, then Delta = |(a(1) + b(1) ...

    Text Solution

    |

  4. If Delta(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))|, then...

    Text Solution

    |

  5. If Delta(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,...

    Text Solution

    |

  6. The value of the determinant Delta = |(1 + a(1) b(1),1 + a(1) b(2),1 +...

    Text Solution

    |

  7. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  8. The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),...

    Text Solution

    |

  9. If A, B and C denote the angles of a triangle, then Delta = |(-1,cos...

    Text Solution

    |

  10. If X,Y and Z are opositive number such that Y and Z have respectively ...

    Text Solution

    |

  11. If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b]...

    Text Solution

    |

  12. If C = 2 cos theta, then the value of the determinant Delta = |(C,1,0)...

    Text Solution

    |

  13. If x^a y^b=e^m , x^c y^d=e^n ,Delta1=|(m,b),(n,d)|,and Delta2 =|(a,m),...

    Text Solution

    |

  14. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  15. Let a , ba n dc detnote the sides B C ,C Aa n dA B respectively of A ...

    Text Solution

    |

  16. If omega is a complex cube root of unity, then a root of the equation ...

    Text Solution

    |

  17. Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}| is indepe...

    Text Solution

    |

  18. If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite s...

    Text Solution

    |

  19. if the system of linear equations {:(x+2ay+az=0),(x+3by+bz=0),(x+4c...

    Text Solution

    |

  20. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |