Home
Class 11
MATHS
The value of the determinant Delta = |(1...

The value of the determinant `Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))|`, is

A

`a_(1) a_(2) a_(3) + b_(1) b_(2) b_(3)`

B

`(a_(1) a_(2) a_(3)) (b_(1) b_(2) b_(3))`

C

`a_(1) a_(2) b_(1) b_(2) + a_(2) a_(3) b_(2) b_(3) + a_(3) a_(1) b_(3) b_(1)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} 1 + a_1 b_1 & 1 + a_1 b_2 & 1 + a_1 b_3 \\ 1 + a_2 b_1 & 1 + a_2 b_2 & 1 + a_2 b_3 \\ 1 + a_3 b_1 & 1 + a_3 b_2 & 1 + a_3 b_3 \end{vmatrix} \] we can simplify it step by step. ### Step 1: Rewrite the determinant We can express the determinant as the sum of two parts: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} + \begin{vmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \\ a_2 b_1 & a_2 b_2 & a_2 b_3 \\ a_3 b_1 & a_3 b_2 & a_3 b_3 \end{vmatrix} \] ### Step 2: Evaluate the first determinant The first determinant is: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \] This determinant is zero because all rows are identical. ### Step 3: Evaluate the second determinant Now, we need to evaluate the second determinant: \[ \begin{vmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \\ a_2 b_1 & a_2 b_2 & a_2 b_3 \\ a_3 b_1 & a_3 b_2 & a_3 b_3 \end{vmatrix} \] We can factor out \(a_1\), \(a_2\), and \(a_3\) from the rows and \(b_1\), \(b_2\), and \(b_3\) from the columns: \[ = a_1 a_2 a_3 \begin{vmatrix} b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \] Again, this determinant is zero because all rows are identical. ### Step 4: Combine results Thus, we have: \[ \Delta = 0 + 0 = 0 \] ### Final Result The value of the determinant \(\Delta\) is: \[ \Delta = 0 \]

To find the value of the determinant \[ \Delta = \begin{vmatrix} 1 + a_1 b_1 & 1 + a_1 b_2 & 1 + a_1 b_3 \\ 1 + a_2 b_1 & 1 + a_2 b_2 & 1 + a_2 b_3 \\ 1 + a_3 b_1 & 1 + a_3 b_2 & 1 + a_3 b_3 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant Delta = |((1 - a_(1)^(3) b_(1)^(3))/(1 - a_(1) b_(1)),(1 - a_(1)^(3) b_(2)^(3))/(1 - a_(1) b_(2)),(1 - a_(1)^(3) b_(3)^(3))/(1 - a_(1) b_(3))),((1 - a_(2)^(3) b_(1)^(3))/(1 - a_(2) b_(1)),(1 - a_(2)^(3) b_(2)^(3))/(1 - a_(2) b_(2)),(1 - a_(2)^(3) b_(3)^(3))/(1 - a_(2) b_(3))),((1 - a_(3)^(3) b_(1)^(3))/(1 - a_(3) b_(1)),(1 - a_(3)^(3) b_(2)^(3))/(1 - a_(3) b_(2)),(1 - a_(3)^(3) b_(3)^(3))/(1 - a_(3) b_(3)))| , is

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then prove that

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

If |(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3))| =5 , then the value of Delta = |(b_(2) c_(3) - b_(3) c_(2),a_(3) c_(2) - a_(2) c_(3),a_(2) b_(3) -a_(3) b_(2)),(b_(3) c_(1) - b_(1) c_(3),a_(1) c_(3) - a_(3) c_(1),a_(3) b_(1) - a_(1) b_(3)),(b_(1) c_(2) - b_(2) c_(1),a_(2) c_(1) - a_(1) c_(2),a_(1) b_(2) - a_(2) b_(1))| is

the value of the determinant |{:((a_(1)-b_(1))^(2),,(a_(1)-b_(2))^(2),,(a_(1)-b_(3))^(2),,(a_(1)-b_(4))^(2)),((a_(2)-b_(1))^(2),,(a_(2)-b_(2))^(2) ,,(a_(2)-b_(3))^(2),,(a_(2)-b_(4))^(2)),((a_(3)-b_(1))^(2),,(a_(3)-b_(2))^(2),,(a_(3)-b_(3))^(2),,(a_(3)-b_(4))^(2)),((a_(4)-b_(1))^(2),,(a_(4)-b_(2))^(2),,(a_(4)-b_(3))^(2),,(a_(4)-b_(4))^(2)):}| is

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

if w is a complex cube root to unity then value of Delta =|{:(a_(1)+b_(1)w,,a_(1)w^(2)+b_(1),,c_(1)+b_(1)bar(w)),(a_(2)+b_(2)w,,a_(2)w^(2)+b_(2),,c_(2)+b_(2)bar(w)),(a_(3)+b_(3)w,,a_(3)w^(2)+b_(3),,c_(3)+b_(3)bar(w)):}| is

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. If Delta(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))|, then...

    Text Solution

    |

  2. If Delta(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,...

    Text Solution

    |

  3. The value of the determinant Delta = |(1 + a(1) b(1),1 + a(1) b(2),1 +...

    Text Solution

    |

  4. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  5. The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),...

    Text Solution

    |

  6. If A, B and C denote the angles of a triangle, then Delta = |(-1,cos...

    Text Solution

    |

  7. If X,Y and Z are opositive number such that Y and Z have respectively ...

    Text Solution

    |

  8. If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b]...

    Text Solution

    |

  9. If C = 2 cos theta, then the value of the determinant Delta = |(C,1,0)...

    Text Solution

    |

  10. If x^a y^b=e^m , x^c y^d=e^n ,Delta1=|(m,b),(n,d)|,and Delta2 =|(a,m),...

    Text Solution

    |

  11. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  12. Let a , ba n dc detnote the sides B C ,C Aa n dA B respectively of A ...

    Text Solution

    |

  13. If omega is a complex cube root of unity, then a root of the equation ...

    Text Solution

    |

  14. Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}| is indepe...

    Text Solution

    |

  15. If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite s...

    Text Solution

    |

  16. if the system of linear equations {:(x+2ay+az=0),(x+3by+bz=0),(x+4c...

    Text Solution

    |

  17. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  18. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  19. If A = |(sin (theta + alpha),cos (theta + alpha),1),(sin (theta + bet...

    Text Solution

    |

  20. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |