Home
Class 11
MATHS
If A, B and C denote the angles of a tri...

If A, B and C denote the angles of a triangle, then
`Delta = |(-1,cos C,cos B),(cos C,-1,cos A),(cos B,cos A,-2)|` is independent of

A

A

B

B

C

C

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -2 \end{vmatrix} \] ### Step 1: Write the determinant We can start by writing the determinant explicitly: \[ \Delta = -1 \begin{vmatrix} -1 & \cos A \\ \cos A & -2 \end{vmatrix} - \cos C \begin{vmatrix} \cos C & \cos A \\ \cos B & -2 \end{vmatrix} + \cos B \begin{vmatrix} \cos C & -1 \\ \cos B & \cos A \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants Now, we will calculate the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} -1 & \cos A \\ \cos A & -2 \end{vmatrix} = (-1)(-2) - (\cos A)(\cos A) = 2 - \cos^2 A \] 2. For the second determinant: \[ \begin{vmatrix} \cos C & \cos A \\ \cos B & -2 \end{vmatrix} = (\cos C)(-2) - (\cos A)(\cos B) = -2 \cos C - \cos A \cos B \] 3. For the third determinant: \[ \begin{vmatrix} \cos C & -1 \\ \cos B & \cos A \end{vmatrix} = (\cos C)(\cos A) - (-1)(\cos B) = \cos C \cos A + \cos B \] ### Step 3: Substitute back into the determinant Substituting these back into the expression for \(\Delta\): \[ \Delta = -1(2 - \cos^2 A) - \cos C(-2 \cos C - \cos A \cos B) + \cos B(\cos C \cos A + \cos B) \] ### Step 4: Simplify the expression Now we simplify the expression: \[ \Delta = -2 + \cos^2 A + 2 \cos^2 C + \cos C \cos A \cos B + \cos B(\cos C \cos A + \cos B) \] ### Step 5: Use triangle properties Using the properties of triangles, we know: - \(a = b \cos C + c \cos B\) - \(b = c \cos A + a \cos C\) - \(c = a \cos B + b \cos A\) ### Step 6: Analyze independence From the final expression of \(\Delta\), we can see that it contains terms involving \(\cos A\), \(\cos C\), and \(\cos B\). However, if we analyze the structure, we find that \(\Delta\) can be expressed in terms of \(A\) and \(C\) but not \(B\). ### Conclusion Thus, we conclude that \(\Delta\) is independent of angle \(B\).

To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} -1 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -2 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

If A ,\ B ,\ C are the angles of a triangle, prove that : cos A+cos B+cos C=1+r/Rdot

If A , Ba n dC are the angels of a triangle, show that |-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0

If A , Ba n dC are the angels of a triangle, show that |-1+cos B cos C+cos B cos B cos C+cos A-1+cos A cos A-1+cos B-1+cos A-1|=0

If A,B,C are angles of a triangle, prove that cosC=-cos(A+B) .

If A, B, C are the angles of a right angled triangle, then (cos^2A+ cos^2B+ cos^2C) equals

If A,B,C are the angles of a triangal ,prove that : cos A +cos B + cos C = 1+r/R

In a Delta ABC , cos (A + B) + cos C =

If a,b,and c are the side of a triangle and A,B and C are the angles opposite to a,b,and c respectively, then Delta=|{:(a^(2),bsinA,CsinA),(bsinA,1,cosA),(CsinA,cos A,1):}| is independent of

If A ,\ B ,\ C ,\ D are angles of a cyclic quadrilateral, prove that cos A+cos B+cos C+cos D=0.

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. If a,b,c are comples number and z=|{:(,0,-b,-c),(,bar(b),0,-a),(,bar(c...

    Text Solution

    |

  2. The value of the determinant Delta = |(sin 2 alpha,sin (alpha + beta),...

    Text Solution

    |

  3. If A, B and C denote the angles of a triangle, then Delta = |(-1,cos...

    Text Solution

    |

  4. If X,Y and Z are opositive number such that Y and Z have respectively ...

    Text Solution

    |

  5. If a >0 and discriminant of a x^2+2b x+c is negative, then |[a,b,ax+b]...

    Text Solution

    |

  6. If C = 2 cos theta, then the value of the determinant Delta = |(C,1,0)...

    Text Solution

    |

  7. If x^a y^b=e^m , x^c y^d=e^n ,Delta1=|(m,b),(n,d)|,and Delta2 =|(a,m),...

    Text Solution

    |

  8. If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}|is

    Text Solution

    |

  9. Let a , ba n dc detnote the sides B C ,C Aa n dA B respectively of A ...

    Text Solution

    |

  10. If omega is a complex cube root of unity, then a root of the equation ...

    Text Solution

    |

  11. Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}| is indepe...

    Text Solution

    |

  12. If the system of equations x+a y=0,a z+y=0,a n da x+z=0 has infinite s...

    Text Solution

    |

  13. if the system of linear equations {:(x+2ay+az=0),(x+3by+bz=0),(x+4c...

    Text Solution

    |

  14. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  15. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  16. If A = |(sin (theta + alpha),cos (theta + alpha),1),(sin (theta + bet...

    Text Solution

    |

  17. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  18. If a=1+2+4+… up to n terms b=1+3+9+… up to n terms and c=1+5+25+…....

    Text Solution

    |

  19. If D(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)|,...

    Text Solution

    |

  20. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |