Home
Class 11
MATHS
If D(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,...

If `D_(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)|`, then the value of `sum_(r=1)^(n) D_(r)`, is

A

0

B

1

C

`(n(n +1) (2n+1))/(6)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( D_r \) given by: \[ D_r = \begin{vmatrix} r & 1 & \frac{n(n + 1)}{2} \\ 2r - 1 & 4 & n^2 \\ 2^{r - 1} & 5 & 2^n - 1 \end{vmatrix} \] and then find the sum \( \sum_{r=1}^{n} D_r \). ### Step 1: Calculate the Determinant \( D_r \) We will calculate the determinant using the formula for a \( 3 \times 3 \) determinant: \[ D = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our determinant: - \( a = r \), \( b = 1 \), \( c = \frac{n(n + 1)}{2} \) - \( d = 2r - 1 \), \( e = 4 \), \( f = n^2 \) - \( g = 2^{r - 1} \), \( h = 5 \), \( i = 2^n - 1 \) Now, we can substitute these values into the determinant formula: \[ D_r = r(4(2^n - 1) - n^2 \cdot 5) - 1((2r - 1)(2^n - 1) - n^2 \cdot 2^{r - 1}) + \frac{n(n + 1)}{2}((2r - 1) \cdot 5 - 4 \cdot 2^{r - 1}) \] ### Step 2: Simplify \( D_r \) 1. Calculate \( 4(2^n - 1) - 5n^2 \): \[ = 4 \cdot 2^n - 4 - 5n^2 \] 2. Calculate \( (2r - 1)(2^n - 1) - n^2 \cdot 2^{r - 1} \): \[ = (2r - 1)2^n - (2r - 1) - n^2 \cdot 2^{r - 1} \] 3. Calculate \( (2r - 1) \cdot 5 - 4 \cdot 2^{r - 1} \): \[ = 10r - 5 - 4 \cdot 2^{r - 1} \] Putting it all together, we can express \( D_r \) in a simplified form. ### Step 3: Evaluate \( \sum_{r=1}^{n} D_r \) Now we need to evaluate the sum \( \sum_{r=1}^{n} D_r \). ### Step 4: Analyze the Columns of the Determinant Notice that if we look closely at the columns of the determinant, we can see that: - The second column is \( (1, 4, 5) \) - The third column is \( \left( \frac{n(n + 1)}{2}, n^2, 2^n - 1 \right) \) If we set \( n = 1 \) and check the values of the columns, we might find that the columns become linearly dependent. ### Step 5: Use Properties of Determinants From the properties of determinants, if two columns (or rows) are the same, the determinant equals zero. In our case, we can see that as we calculate \( D_r \) for different values of \( r \), we may find that the second and third columns become identical for certain values of \( r \). Thus, we conclude: \[ \sum_{r=1}^{n} D_r = 0 \] ### Final Answer The value of \( \sum_{r=1}^{n} D_r \) is \( 0 \). ---

To solve the problem, we need to evaluate the determinant \( D_r \) given by: \[ D_r = \begin{vmatrix} r & 1 & \frac{n(n + 1)}{2} \\ 2r - 1 & 4 & n^2 \\ 2^{r - 1} & 5 & 2^n - 1 \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If Delta_(r) = |(1,r,2^(r)),(2,n,n^(2)),(n,(n(n+1))/(2),2^(n+1))| , then the value of sum_(r=1)^(n) Delta_(r) is

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If Delta_(r) = |(2^(r -1),((r +1)!)/((1 + 1//r)),2r),(a,b,c),(2^(n) -1,(n +1)! -1,n(n +1))| , then sum_(r =1)^(n) Delta_(r) is equal to

If A_r=|(1,r,2^r),(2,n,n^2),(n,(n(n+1))/2 ,2^(n+1))| , then the value of sum_(r=1)^n A_r is n (b) 2n (c) -2n (d) n^2

Sum of the series sum_(r=1)^(n) (r^(2)+1)r! is

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

If a_(1)=2 and a_(n)=2a_(n-1)+5 for ngt1 , the value of sum_(r=2)^(5)a_(r) is

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

If A_r=|[1,r,2^r],[2,n,n^2],[n,(n(n+1))/2, 2^(n+1)]|, the value of sum_(r=1)^n A_r is (A) n (B) 2n (C) -2n (D) n^2

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  2. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  3. If A = |(sin (theta + alpha),cos (theta + alpha),1),(sin (theta + bet...

    Text Solution

    |

  4. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  5. If a=1+2+4+… up to n terms b=1+3+9+… up to n terms and c=1+5+25+…....

    Text Solution

    |

  6. If D(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)|,...

    Text Solution

    |

  7. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  8. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1, x+y+al...

    Text Solution

    |

  9. Let a,b,c be such that b(a+c) ne 0. If |{:(a,a+1,a-1),(-b,b+1,b-1)...

    Text Solution

    |

  10. If 3^n is a factor of the determinant |{:(1,1,1),(.^nC1,.^(n+3)C1,.^(n...

    Text Solution

    |

  11. The number of 3 x 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  12. consider the system of linear equations x(1)+2x(2)+x(3)=3 2x(1)...

    Text Solution

    |

  13. If f(theta) = |(1,tan theta,1),(- tan theta,1,tan theta),(-1,-tan thet...

    Text Solution

    |

  14. If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(...

    Text Solution

    |

  15. In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0, then sin^(2) A + s...

    Text Solution

    |

  16. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  17. The set of all values of lambda for which the system of linear equ...

    Text Solution

    |

  18. If a^(2)+b^(2)+c^(2)+ab+bc+ca le 0 AA a,b,c in R, then value of the de...

    Text Solution

    |

  19. For all values of theta in(0,pi/2), the determinant of the matrix [(...

    Text Solution

    |

  20. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |