Home
Class 11
MATHS
In a Delta ABC " if " |(1,a,b),(1,c,a),(...

In a `Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0`, then `sin^(2) A + sin^(2) B + sin^(2) C` is

A

`(3 sqrt3)/(2)`

B

`(9)/(4)`

C

`(5)/(4)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the determinant given and derive the necessary conditions for the triangle ABC. ### Step-by-Step Solution: 1. **Understanding the Determinant**: We are given the determinant: \[ D = \begin{vmatrix} 1 & a & b \\ 1 & c & a \\ 1 & b & c \end{vmatrix} = 0 \] This determinant being zero implies that the rows are linearly dependent. 2. **Expanding the Determinant**: We can expand this determinant using the first row: \[ D = 1 \cdot \begin{vmatrix} c & a \\ b & c \end{vmatrix} - 1 \cdot \begin{vmatrix} a & b \\ b & c \end{vmatrix} + 1 \cdot \begin{vmatrix} a & b \\ c & a \end{vmatrix} \] This simplifies to: \[ D = (c \cdot c - a \cdot b) - (a \cdot c - b \cdot b) + (a \cdot a - b \cdot c) \] \[ = c^2 - ab - ac + b^2 + a^2 - bc \] 3. **Setting the Determinant to Zero**: Since the determinant is zero, we have: \[ c^2 - ab - ac + b^2 + a^2 - bc = 0 \] Rearranging gives: \[ a^2 + b^2 + c^2 - ab - ac - bc = 0 \] 4. **Recognizing the Condition**: The equation \( a^2 + b^2 + c^2 - ab - ac - bc = 0 \) indicates that the triangle is equilateral. This is because the equality holds if and only if \( a = b = c \). 5. **Finding Sine Values**: In an equilateral triangle, all angles \( A, B, C \) are equal to \( 60^\circ \). Therefore: \[ \sin A = \sin B = \sin C = \sin 60^\circ = \frac{\sqrt{3}}{2} \] 6. **Calculating \( \sin^2 A + \sin^2 B + \sin^2 C \)**: \[ \sin^2 A + \sin^2 B + \sin^2 C = 3 \cdot \left(\sin 60^\circ\right)^2 = 3 \cdot \left(\frac{\sqrt{3}}{2}\right)^2 \] \[ = 3 \cdot \frac{3}{4} = \frac{9}{4} \] ### Final Answer: Thus, we find that: \[ \sin^2 A + \sin^2 B + \sin^2 C = \frac{9}{4} \]

To solve the problem, we need to analyze the determinant given and derive the necessary conditions for the triangle ABC. ### Step-by-Step Solution: 1. **Understanding the Determinant**: We are given the determinant: \[ D = \begin{vmatrix} 1 & a & b \\ ...
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Let a , b and c detnote the sides BC,CA and AB respectively of triangle ABC . If |[1,a, b],[1,c, a],[1,b ,c]|=0 . find the value of sin^2A+sin^2B+sin^2C

Let a ,\ b and c denote the sides B C ,\ C A and A B respectively of A B C . If |1a b1c a1b c|=0, then find the value of sin^2A+sin^2B+sin^2C .

If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0 , then the triangle ABC is

In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

In /_\ABC , if sin A= 1/3 and sin B= 1/4 , sin C=

If a, b,c be the sides of a triangle ABC and if roots of equation a(b-c)x^2+b(c-a)x+c(a-b)=90 are equal then sin^2 A/2, sin^2 B/2, sin^2 C/2 are in

In a triangle sin^(4)A + sin^(4)B + sin^(4)C = sin^(2)B sin^(2)C + 2sin^(2) C sin^(2)A + 2sin^(2)A sin^(2)B , then its angle A is equal to-

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In a Delta ABC, if cos A+cos C=4 sin^(2)((B)/(2)), then a,b,c are in

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Section I - Solved Mcqs
  1. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  2. Evaluate: =|(10 !, 11 !, 12 !), (11 !, 12 !, 13 !), (12 !, 13 !, 14 !)...

    Text Solution

    |

  3. If A = |(sin (theta + alpha),cos (theta + alpha),1),(sin (theta + bet...

    Text Solution

    |

  4. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  5. If a=1+2+4+… up to n terms b=1+3+9+… up to n terms and c=1+5+25+…....

    Text Solution

    |

  6. If D(r) = |(r,1,(n(n +1))/(2)),(2r -1,4,n^(2)),(2^(r -1),5,2^(n) -1)|,...

    Text Solution

    |

  7. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  8. The system of equations alphax+y+z=alpha-1, x+alphay+z=alpha-1, x+y+al...

    Text Solution

    |

  9. Let a,b,c be such that b(a+c) ne 0. If |{:(a,a+1,a-1),(-b,b+1,b-1)...

    Text Solution

    |

  10. If 3^n is a factor of the determinant |{:(1,1,1),(.^nC1,.^(n+3)C1,.^(n...

    Text Solution

    |

  11. The number of 3 x 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  12. consider the system of linear equations x(1)+2x(2)+x(3)=3 2x(1)...

    Text Solution

    |

  13. If f(theta) = |(1,tan theta,1),(- tan theta,1,tan theta),(-1,-tan thet...

    Text Solution

    |

  14. If a, b, c are non zero complex numbers satisfying a^(2) + b^(2) + c^(...

    Text Solution

    |

  15. In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0, then sin^(2) A + s...

    Text Solution

    |

  16. Which of the following values of alpha satisfying the equation |(1+alp...

    Text Solution

    |

  17. The set of all values of lambda for which the system of linear equ...

    Text Solution

    |

  18. If a^(2)+b^(2)+c^(2)+ab+bc+ca le 0 AA a,b,c in R, then value of the de...

    Text Solution

    |

  19. For all values of theta in(0,pi/2), the determinant of the matrix [(...

    Text Solution

    |

  20. The total number of distinct x in R for which |{:(x,,x^(2),,...

    Text Solution

    |