Home
Class 11
MATHS
If alpha,beta,gamma are real numbers,...

If `alpha,beta,gamma` are real numbers, then without expanding at any stage, show that `|1cos(beta-alpha)"cos"(gamma-alpha)"cos"(alpha-beta)1"cos"(gamma-beta)"cos"(alpha-gamma)"cos"(beta-gamma)1|=0`

A

Statement 1 is true, Statement 2 is true, Statement 2 is a correct explanation for Statement 2

B

Statement 1 is true, Statement 2 is true, Statement 2 is not a correct explanation for Statement 2

C

Statement 1 is true, Statement 2 is False

D

Statement 1 is False, Statement 2 is true

Text Solution

Verified by Experts

The correct Answer is:
A

We have,
`D = |(1,cos (beta - alpha),cos (gamma - alpha)),(cos (alpha - beta),1,cos (gamma - beta)),(cos (alpha - gamma),cos (beta - gamma),1)|`
`= |(cos^(2) alpha + sin^(2) alpha,cos beta cos alpha + sin beta sin alpha,cos gamma cos alpha + sin gamma sin alpha),(cos alpha cos beta + sin alpha sin beta,cos^(2) beta + sin^(2) beta,cos gamma cos beta + sin gamma sin beta),(cos alpha cos gamma + sin alpha sin gamma,cos beta cos gamma + sin beta sin gamma,cos^(2) gamma + sin^(2) gamma)|`
`= |(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma ,sin gamma,0)| |(cos alpha,sin alpha,0),(cos beta,sin beta,0),(cos gamma,sin gamma,0)|= 0`
So, both the statement are true and statement 2 is a correct explanation for statement 1
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section I - Solved Mcqs|74 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta "and" gamma are real number without expanding at any stage prove that |{:(1,cos(beta-alpha),cos(gamma-alpha)),(cos(alpha-beta),1,cos(gamma-beta)),(cos(alpha-gamma),cos(beta-gamma),1):}| =0.

Prove that : cos^2 (beta-gamma) + cos^2 (gamma-alpha) + cos^2 (alpha-beta) =1+2cos (beta-gamma) cos (gamma-alpha) cos (alpha-beta) .

If cos(alpha+beta)sin(gamma+delta)="cos"(alpha-beta)"sin"(gamma-delta) , prove that cotalphacotbetacotgamma=cotdelta

cos alphasin(beta-gamma)+cosbetasin(gamma-alpha)+cos gammasin(alpha-beta)=

If alpha,beta,gamma are the angles of a triangle and system of equations cos(alpha-beta)x+cos(beta-gamma)y+cos(gamma-alpha)z=0 cos(alpha+beta)x+cos(beta+gamma)y+cos(gamma+alpha)z=0 sin(alpha+beta)x+sin(beta+gamma)y+sin(gamma+alpha)z=0 has non-trivial solutions, then triangle is necessarily a. equilateral b. isosceles c. right angled "" d. acute angled

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

Prove that cosalpha+cosbeta+cosgamma+cos(alpha+beta+gamma)=4cos((alpha+beta)/2)cos((beta+gamma)/2)cos((gamma+alpha)/2)

If cos(alpha+beta)*sin(gamma+delta)=cos(alpha-beta)*sin(gamma-delta), prove that cotalphacotbetacotgamma=cotdelta

If cos(alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)=-3/2 , prove that cosalpha+cosbeta+cosgamma=sinalpha+sinbeta+singamma=0

|[1,cos(alpha-beta), cos alpha] , [cos(alpha-beta),1,cos beta] , [cos alpha, cos beta, 1]|