Home
Class 11
MATHS
If the determinant |(b -c,c -a,a -b),(b'...

If the determinant `|(b -c,c -a,a -b),(b' -c',c' -a',a' -b'),(b'' -c'',c'' -a'',a'' - b'')|` is expressible an `m |(a,b,c),(a',b',c'),(a'',b'',c'')|`, then the value of m, is

A

`-1`

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the determinant \[ D = \begin{vmatrix} b - c & c - a & a - b \\ b' - c' & c' - a' & a' - b' \\ b'' - c'' & c'' - a'' & a'' - b'' \end{vmatrix} \] and express it in the form \( m \cdot \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} \). ### Step 1: Simplifying the Determinant We can simplify the determinant \( D \) by using the property of determinants that allows us to add or subtract columns. Specifically, we will add all three columns together. \[ D = \begin{vmatrix} (b - c) + (c - a) + (a - b) & c - a & a - b \\ (b' - c') + (c' - a') + (a' - b') & c' - a' & a' - b' \\ (b'' - c'') + (c'' - a'') + (a'' - b'') & c'' - a'' & a'' - b'' \end{vmatrix} \] ### Step 2: Evaluating the First Column When we add the columns, we observe that: \[ (b - c) + (c - a) + (a - b) = 0 \] \[ (b' - c') + (c' - a') + (a' - b') = 0 \] \[ (b'' - c'') + (c'' - a'') + (a'' - b'') = 0 \] Thus, the first column becomes a column of zeros: \[ D = \begin{vmatrix} 0 & c - a & a - b \\ 0 & c' - a' & a' - b' \\ 0 & c'' - a'' & a'' - b'' \end{vmatrix} \] ### Step 3: Determinant of a Matrix with a Zero Column The determinant of any matrix that has a column of zeros is zero. Therefore, we have: \[ D = 0 \] ### Step 4: Expressing in Terms of the Second Determinant We know that \( D \) can also be expressed as: \[ D = m \cdot \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} \] Since we found that \( D = 0 \), we can equate: \[ 0 = m \cdot \begin{vmatrix} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{vmatrix} \] ### Step 5: Conclusion For the equation to hold true, either \( m \) must be zero or the determinant on the right side must be zero. However, since we are looking for a specific value of \( m \), we conclude: \[ m = 0 \] Thus, the value of \( m \) is \( 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(b +c,a -b,a),(c +a,b -c,b),(a +b,c -a,c)| , is

Write the value of the following determinant |(a-b,b-c,c-a),(b-c,c-a,a-b),(c-a,a-b,b-c)|

If the determinant |b-cc-a a-bb^(prime)-c ' c^(prime)-a ' a^(prime)-b ' b^-c ' ' c^-a ' ' a^-b ' '|=m|a b c a ' b ' c ' a ' ' b ' ' c ' '| , then the value of m s 0 b. 2 c. 1 d. -1

Using properties of determinants, Find |(b+c,a,a),(b,c+a,b),(c,c,a+b)|

The value of the determinant |[a-b,b+c,a],[b-c,c+a,b],[c-a,a+b,c]| is

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

Show that |[b-c,c-a, a-b],[ c-a, a-b,b-c],[ a-b,b-c,c-a]| = 0 .

The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)| , is

Prove: |(a, b-c,c-b),( a-c, b, c-a),( a-b,b-a, c)|=(a+b-c)(b+c-a)(c+a-b)

Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. If B is a non-sinfular matrix and A is square matrix, then det B^(-1)A...

    Text Solution

    |

  2. If 0 lt theta lt pi and the system of equations (sin theta) x + y + ...

    Text Solution

    |

  3. If the determinant |(b -c,c -a,a -b),(b' -c',c' -a',a' -b'),(b'' -c'',...

    Text Solution

    |

  4. If a !=b, then the system of equation ax + by + bz = 0 bx + ay + bz ...

    Text Solution

    |

  5. if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+...

    Text Solution

    |

  6. Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to...

    Text Solution

    |

  7. Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(a...

    Text Solution

    |

  8. The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are ...

    Text Solution

    |

  9. Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)],...

    Text Solution

    |

  10. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  11. The value of the determinant |{:(ka,,k^(2)+a^(2),,1),(kb,,k^(2)+b^(2)...

    Text Solution

    |

  12. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  13. The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,ome...

    Text Solution

    |

  14. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  15. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  16. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  17. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  18. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  19. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  20. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |