Home
Class 11
MATHS
If a !=b, then the system of equation a...

If `a !=b`, then the system of equation `ax + by + bz = 0` `bx + ay + bz = 0` and `bx + by + az = 0` will have a non-trivial solution, if

A

`a + b = 0`

B

`a + 2b = 0`

C

`2a + b = 0`

D

`a + 4b = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the conditions under which the system of equations has a non-trivial solution, we need to analyze the given equations: 1. \( ax + by + bz = 0 \) 2. \( bx + ay + bz = 0 \) 3. \( bx + by + az = 0 \) ### Step 1: Write the system in matrix form We can express the system of equations in matrix form as follows: \[ \begin{bmatrix} a & b & b \\ b & a & b \\ b & b & a \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \] ### Step 2: Find the determinant of the coefficient matrix For the system to have a non-trivial solution, the determinant of the coefficient matrix must be zero: \[ D = \begin{vmatrix} a & b & b \\ b & a & b \\ b & b & a \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula for a \(3 \times 3\) matrix, we have: \[ D = a \begin{vmatrix} a & b \\ b & a \end{vmatrix} - b \begin{vmatrix} b & b \\ b & a \end{vmatrix} + b \begin{vmatrix} b & a \\ b & b \end{vmatrix} \] Calculating the \(2 \times 2\) determinants: 1. \( \begin{vmatrix} a & b \\ b & a \end{vmatrix} = a^2 - b^2 \) 2. \( \begin{vmatrix} b & b \\ b & a \end{vmatrix} = ab - b^2 = b(a - b) \) 3. \( \begin{vmatrix} b & a \\ b & b \end{vmatrix} = bb - ab = b(b - a) \) Substituting these back into the determinant \(D\): \[ D = a(a^2 - b^2) - b[b(a - b)] + b[b(b - a)] \] Simplifying this gives: \[ D = a^3 - ab^2 - b^2a + b^3 \] Combining like terms: \[ D = a^3 + b^3 - 3ab^2 \] ### Step 4: Set the determinant to zero for non-trivial solution For a non-trivial solution, we set the determinant to zero: \[ a^3 + b^3 - 3ab^2 = 0 \] ### Step 5: Factor the equation We can factor \(a^3 + b^3\) as follows: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Thus, we have: \[ (a + b)(a^2 - ab + b^2) - 3ab^2 = 0 \] ### Step 6: Analyze the conditions The equation \(a^2 - ab + b^2 = 0\) has no real solutions unless \(a = b = 0\), which contradicts \(a \neq b\). Therefore, we focus on the condition: \[ a + b = 0 \implies a = -b \] ### Conclusion The system of equations will have a non-trivial solution if: \[ a + 2b = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

if a gt b gt c and the system of equations ax + by + cz = 0, bx + cy + az 0 and cx + ay + bz = 0 has a non-trivial solution, then the quadratic equation ax^(2) + bx + c =0 has

If the system of equations x + 4ay + az = 0 and x + 3by + bz = 0 and x + 2cy + cz = 0 have a nonzero solution, then a, b, c ( != 0) are in

The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z = 0 has non-trivial solution if a, b, c are in

If the system of linear equations x + 2ay + az = 0 x + 3by + bz = 0 x + 4cy + cz = 0 has a non-zero solution, then a, b, c

If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + cy + z = 0 where a, b and c are non-zero non-unity, has a non-trivial solution, then value of (a)/(1 -a) + (b)/(1- b) + (c)/(1 -c) is

Find a in R for which the system of equations 2ax-2y+3z=0 , x+ay + 2z=0 and 2x+az=0 also have a non-trivial solution.

If the system of equation ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 has non-trivial solution then find the value of |{:(bc-a^2,ca-b^2,ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2):}|

Let alpha ,beta and gamma be the roots of the equations x^(3) +ax^(2)+bx+ c=0,(a ne 0) . If the system of equations alphax + betay+gammaz=0 beta x +gamma y+ alphaz =0 and gamma x =alpha y + betaz =0 has non-trivial solution then

If a gt b gt c and the system of equtions ax +by +cz =0 , bx +cy+az=0 , cx+ay+bz=0 has a non-trivial solution then both the roots of the quadratic equation at^(2)+bt+c are

The number of integral values of a for which the system of linear equations x sin theta -2 y cos theta -az=0 , x+2y+z=0,-x+y+z=0 may have non-trivial solutions, then

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. If 0 lt theta lt pi and the system of equations (sin theta) x + y + ...

    Text Solution

    |

  2. If the determinant |(b -c,c -a,a -b),(b' -c',c' -a',a' -b'),(b'' -c'',...

    Text Solution

    |

  3. If a !=b, then the system of equation ax + by + bz = 0 bx + ay + bz ...

    Text Solution

    |

  4. if |{:(1,,1,,1),(a,,b,,c),(a^(3),,b^(3),,c^(3)):}|= (a-b)(b-c)(c-a)(a+...

    Text Solution

    |

  5. Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to...

    Text Solution

    |

  6. Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(a...

    Text Solution

    |

  7. The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are ...

    Text Solution

    |

  8. Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)],...

    Text Solution

    |

  9. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  10. The value of the determinant |{:(ka,,k^(2)+a^(2),,1),(kb,,k^(2)+b^(2)...

    Text Solution

    |

  11. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  12. The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,ome...

    Text Solution

    |

  13. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  14. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  15. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  16. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  17. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  18. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  19. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  20. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |