Home
Class 11
MATHS
The equation |(x-a,x-b,x-c),(x-b,x-a,x-c...

The equation `|(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0` (a,b,c are different) is satisfied by (A) `x=(a+b+c0` (B) `x= 1/3 (a+b+c)` (C) `x=0` (D) none of these

A

`x = 0`

B

`x = a`

C

`x = (1)/(3) (a + b +c)`

D

`x = a + b + c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant \( |(x-a, x-b, x-c), (x-b, x-a, x-c), (x-c, x-b, x-a)| = 0 \), we will follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x-a & x-b & x-c \\ x-b & x-a & x-c \\ x-c & x-b & x-a \end{vmatrix} \] ### Step 2: Simplify the Determinant We can simplify the determinant by adding the first column to the second and third columns: \[ D = \begin{vmatrix} x-a & (x-b) + (x-a) & (x-c) + (x-a) \\ x-b & (x-a) + (x-b) & (x-c) + (x-b) \\ x-c & (x-b) + (x-c) & (x-a) + (x-c) \end{vmatrix} \] This results in: \[ D = \begin{vmatrix} x-a & 2x - a - b & 2x - a - c \\ x-b & 2x - b - a & 2x - b - c \\ x-c & 2x - c - b & 2x - c - a \end{vmatrix} \] ### Step 3: Factor Out Common Terms Notice that the first column can be factored out: \[ D = (3x - (a + b + c)) \cdot \begin{vmatrix} 1 & 1 & 1 \\ x-b & x-a & x-c \\ x-c & x-b & x-a \end{vmatrix} \] ### Step 4: Evaluate the Remaining Determinant Now we can evaluate the remaining determinant. We can perform row operations on the determinant to simplify it: \[ D = (3x - (a + b + c)) \cdot \begin{vmatrix} 1 & 1 & 1 \\ x-b & x-a & x-c \\ x-c & x-b & x-a \end{vmatrix} \] ### Step 5: Set the Determinant to Zero For the determinant to equal zero, we have two cases: 1. \( 3x - (a + b + c) = 0 \) 2. The second determinant equals zero, but since \( a, b, c \) are distinct, this case does not apply. ### Step 6: Solve for x From the first case: \[ 3x = a + b + c \implies x = \frac{a + b + c}{3} \] ### Conclusion Thus, the value of \( x \) that satisfies the equation is: \[ x = \frac{a + b + c}{3} \] ### Final Answer The correct option is (B) \( x = \frac{1}{3}(a + b + c) \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Solve the equation |{:(x+a,x+b,x+c),(x+b,x+c,x+a),(x+c,x+a,x+b):}|=0

both roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are

If a ne b ne c , then solution of equation |{:(x-a,x-b,x-c),(x-b,x-c,x-a),(x-c, x-a,x-b):}|=0" "is:

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

If f(x)=|(0, x-a, x-b), (x+a, 0, x-c),(x+b, x+c, 0)| , then

Prove that : |{:(x+a,b,c),(a,x+b,c),(a,b,x+c):}|=x^(2)(x+a+b+c)

Let f(x)=a+b|x|+c|x|^4 , where a ,\ b , and c are real constants. Then, f(x) is differentiable at x=0 , if a=0 (b) b=0 (c) c=0 (d) none of these

If y=1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))+1/(1+x^(b-a)+x^(c-a)), then (dy)/(dx) is equal to (a) 1 (b) (a+b+c)^(x+b+c-1) 0 (d) none of these

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to...

    Text Solution

    |

  2. Consider the function f(x) = |{:(a^(2)+x,,ab,,ac),(ab,,b^(2)+x,,bc),(a...

    Text Solution

    |

  3. The equation |(x-a,x-b,x-c),(x-b,x-a,x-c),(x-c,x-b,x-a)|=0 (a,b,c are ...

    Text Solution

    |

  4. Let A = [(1,sin theta,1),(- sin theta,1,sin theta),(-1,-sin theta,1)],...

    Text Solution

    |

  5. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  6. The value of the determinant |{:(ka,,k^(2)+a^(2),,1),(kb,,k^(2)+b^(2)...

    Text Solution

    |

  7. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  8. The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,ome...

    Text Solution

    |

  9. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  10. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  11. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  12. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  13. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  14. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  15. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  16. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  17. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  18. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  19. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  20. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |