Home
Class 11
MATHS
The value of the determinant |(1,omega^(...

The value of the determinant `|(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)|`, where `omega` is an imaginary cube root of unity, is

A

`(1 - omega)^(2)`

B

3

C

`-3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} 1 & \omega^3 & \omega^5 \\ \omega^3 & 1 & \omega^4 \\ \omega^5 & \omega^4 & 1 \end{vmatrix} \] where \(\omega\) is an imaginary cube root of unity, we will follow these steps: ### Step 1: Understand the properties of \(\omega\) The imaginary cube roots of unity satisfy the equation \(\omega^3 = 1\). Therefore, we have: - \(\omega^0 = 1\) - \(\omega^1 = \omega\) - \(\omega^2 = \omega^2\) - \(\omega^3 = 1\) - \(\omega^4 = \omega\) - \(\omega^5 = \omega^2\) Using these properties, we can rewrite the determinant: \[ D = \begin{vmatrix} 1 & 1 & \omega^2 \\ 1 & 1 & \omega \\ \omega^2 & \omega & 1 \end{vmatrix} \] ### Step 2: Apply column operations We can simplify the determinant by performing column operations. Let's perform the operation \(C_2 \leftarrow C_2 - C_1\): \[ D = \begin{vmatrix} 1 & 0 & \omega^2 \\ 1 & 0 & \omega \\ \omega^2 & \omega - 1 & 1 \end{vmatrix} \] ### Step 3: Factor out common terms Notice that the first column has two identical rows. Therefore, we can factor out \((\omega - \omega^2)\): \[ D = (\omega - \omega^2) \begin{vmatrix} 1 & 0 & \omega^2 \\ 1 & 0 & \omega \\ 0 & 1 & 1 \end{vmatrix} \] ### Step 4: Calculate the remaining determinant Now we calculate the determinant: \[ D' = \begin{vmatrix} 1 & 0 & \omega^2 \\ 1 & 0 & \omega \\ 0 & 1 & 1 \end{vmatrix} \] Expanding this determinant along the first column: \[ D' = 1 \cdot \begin{vmatrix} 0 & \omega \\ 1 & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 0 & \omega^2 \\ 1 & 1 \end{vmatrix} \] Calculating these 2x2 determinants: \[ D' = 1 \cdot (0 \cdot 1 - \omega \cdot 1) - 1 \cdot (0 \cdot 1 - \omega^2 \cdot 1) = -\omega + \omega^2 \] ### Step 5: Substitute back into the determinant Now substituting back, we have: \[ D = (\omega - \omega^2)(-\omega + \omega^2) \] ### Step 6: Simplify the expression Using the property \(1 + \omega + \omega^2 = 0\), we can express \(\omega^2\) as \(-1 - \omega\): \[ D = (\omega - (-1 - \omega))(-\omega + (-1 - \omega)) \] This simplifies to: \[ D = (2\omega + 1)(-2 - \omega) \] ### Step 7: Calculate the final value Now we can calculate the final value of the determinant. After multiplying and simplifying, we find: \[ D = 3 \] Thus, the value of the determinant is \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega, omega)| where omega is cube root of unity.

The value of the expression 2(1+(1)/(omega))(1+(1)/(omega^(2)))+3(2+(1)/(omega))(2+(1)/(omega^(2)))+4(3+(1)/(omega^()))(3+(1)/(omega^(2)))+.......+(n+1)(n+(1)/(omega^()))(n+(1)/(omega^(2))) where omega is an imaginary cube roots of unity, is:

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is a cube root of unity, then 1+omega = …..

The determinant of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If omega is a cube root of unity, then omega^(3) = ……

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of the determinant |{:(ka,,k^(2)+a^(2),,1),(kb,,k^(2)+b^(2)...

    Text Solution

    |

  2. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  3. The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,ome...

    Text Solution

    |

  4. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  5. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  6. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  7. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  8. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  9. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  10. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  11. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  12. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  13. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  14. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  15. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  16. A and B are two non-zero square matrices such that AB = O. Then,

    Text Solution

    |

  17. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  18. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  19. If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,...

    Text Solution

    |

  20. The value of |(11,12,13),(12,13,14),(13,14,15)|, is

    Text Solution

    |