Home
Class 11
MATHS
If a,b,c are non-zero real number such t...

If `a,b,c` are non-zero real number such that `|(bc,ca,ab),(ca,ab,bc),(ab,bc,ca)|=0,` then

A

`(1)/(a) + (1)/(b omega) + (1)/(c omega^(2)) = 0`

B

`(1)/(a) + (1)/(b omega^(2)) + (1)/(c omega) = 0`

C

`(1)/(a omega) + (1)/(b omega^(2)) + (1)/(c) = 0`

D

`(1)/(a) + (1)/(b) + (1)/(c) = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} bc & ca & ab \\ ca & ab & bc \\ ab & bc & ca \end{vmatrix} \] We are given that \( |D| = 0 \). ### Step 1: Calculate the Determinant Using the determinant formula for a \(3 \times 3\) matrix, we have: \[ D = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \] Substituting the values from our matrix: \[ D = bc(ab \cdot ca - bc \cdot ab) - ca(ca \cdot ca - bc \cdot ab) + ab(ca \cdot bc - ab \cdot ab) \] ### Step 2: Simplify Each Term 1. The first term: \[ bc(ab \cdot ca - bc \cdot ab) = bc(abca - bcab) = bc(abca - abbc) = 0 \] 2. The second term: \[ -ca(ca^2 - b^2c^2) = -ca(c^2a^2 - b^2c^2) = -ca(c^2a^2 - b^2c^2) \] 3. The third term: \[ ab(ca \cdot bc - ab^2) = ab(cabc - a^2b) = ab(cabc - a^2b) \] ### Step 3: Combine the Terms Combining all the terms, we have: \[ D = 0 - ca(c^2a^2 - b^2c^2) + ab(cabc - a^2b) \] ### Step 4: Set the Determinant to Zero Since we know \(D = 0\), we can set the equation to zero: \[ -ca(c^2a^2 - b^2c^2) + ab(cabc - a^2b) = 0 \] ### Step 5: Factor the Expression Factoring out common terms, we can analyze the conditions under which this determinant equals zero. ### Step 6: Analyze Conditions We can derive two conditions from the determinant being zero: 1. \(bc + ca + ab = 0\) 2. \(ab = bc = ca\) From these conditions, we can deduce relationships between \(a\), \(b\), and \(c\). ### Step 7: Conclusion From the conditions derived, we can conclude that if \(a\), \(b\), and \(c\) are non-zero, then they must be equal or related in such a way that their products yield a zero sum.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If a,b and c are non- zero real number then prove that |{:(b^(2)c^(2),,bc,,b+c),(c^(2)a^(2),,ca,,c+a),(a^(2)b^(2),,ab,,a+b):}| =0

If a,b,c are real numbers such that 3(a^(2)+b^(2)+c^(2)+1)=2(a+b+c+ab+bc+ca) , than a,b,c are in

If a , b , c are all non-zero and a+b+c=0 , then (a^(2))/(bc)+(b^(2))/(ca)+(c^(2))/(ab)= ? .

If a,b,c are in H.P and ab+bc+ca=15 then ca=

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

If a,b,c are unequal and positive then show that (bc)/(b+c)+(ca)/(c+a)+(ab)/(a+b)<1/2(a+b+c)

Simply |{:(,a,b,c),(,a^(2),b^(2),c^(2)),(,bc,ca,ab):}|

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

If a,b,c are in A.P then a+1/(bc), b+1/(ca), c+1/(ab) are in

If the system of equation ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 has non-trivial solution then find the value of |{:(bc-a^2,ca-b^2,ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2):}|

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The system of simulataneous equations kx + 2y -z = 1 (k -1) y -2z ...

    Text Solution

    |

  2. The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,ome...

    Text Solution

    |

  3. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  4. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  5. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  6. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  7. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  8. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  9. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  10. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  11. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  12. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  13. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  14. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  15. A and B are two non-zero square matrices such that AB = O. Then,

    Text Solution

    |

  16. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  17. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  18. If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,...

    Text Solution

    |

  19. The value of |(11,12,13),(12,13,14),(13,14,15)|, is

    Text Solution

    |

  20. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |