Home
Class 11
MATHS
If the system of equations x + ay + az...

If the system of equations
`x + ay + az = 0`
`bx + y + bz = 0`
`cx + cy + z = 0`
where a, b and c are non-zero non-unity, has a non-trivial solution, then value of `(a)/(1 -a) + (b)/(1- b) + (c)/(1 -c)` is

A

0

B

1

C

`-1`

D

`(abc)/(a^(2) + b^(2) + c^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of equations for non-trivial solutions, we need to find the determinant of the coefficient matrix and set it equal to zero. Let's go through the steps systematically. ### Step 1: Write the system of equations in matrix form The given equations are: 1. \( x + ay + az = 0 \) 2. \( bx + y + bz = 0 \) 3. \( cx + cy + z = 0 \) The coefficient matrix can be represented as: \[ \begin{bmatrix} 1 & a & a \\ b & 1 & b \\ c & c & 1 \end{bmatrix} \] ### Step 2: Calculate the determinant of the coefficient matrix We need to find the determinant of the matrix: \[ \Delta = \begin{vmatrix} 1 & a & a \\ b & 1 & b \\ c & c & 1 \end{vmatrix} \] ### Step 3: Expand the determinant Using the determinant formula for a 3x3 matrix: \[ \Delta = 1 \cdot \begin{vmatrix} 1 & b \\ c & 1 \end{vmatrix} - a \cdot \begin{vmatrix} b & b \\ c & 1 \end{vmatrix} + a \cdot \begin{vmatrix} b & 1 \\ c & c \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 1 & b \\ c & 1 \end{vmatrix} = 1 \cdot 1 - b \cdot c = 1 - bc \) 2. \( \begin{vmatrix} b & b \\ c & 1 \end{vmatrix} = b \cdot 1 - b \cdot c = b - bc = b(1 - c) \) 3. \( \begin{vmatrix} b & 1 \\ c & c \end{vmatrix} = b \cdot c - 1 \cdot c = bc - c = c(b - 1) \) Putting it all together: \[ \Delta = 1 - bc - a(b(1 - c)) + a(c(b - 1)) \] Simplifying: \[ \Delta = 1 - bc - ab + abc + ac - ab \] \[ \Delta = 1 - ab - bc + abc + ac \] ### Step 4: Set the determinant to zero for non-trivial solutions For the system to have non-trivial solutions: \[ 1 - ab - bc + abc + ac = 0 \] ### Step 5: Rearranging the equation Rearranging gives: \[ abc + ac - ab - bc + 1 = 0 \] ### Step 6: Solve for \( \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} \) We need to find the value of: \[ \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} \] Using the identity: \[ \frac{x}{1-x} = \frac{1}{1-x} - 1 \] We can rewrite: \[ \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = \left(\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c}\right) - 3 \] ### Step 7: Finding the common denominator The common denominator for the fractions is: \[ (1-a)(1-b)(1-c) \] ### Step 8: Substitute back to find the value From the earlier determinant condition, we can derive that: \[ \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = -1 \] ### Final Answer Thus, the value of \( \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} \) is: \[ \boxed{-1} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If the system of linear equations ax +by+ cz =0 cx + ay + bz =0 bx + cy +az =0 where a,b,c, in R are non-zero and distinct, has a non-zero solution, then:

If the system of linear equations x + 2ay + az = 0 x + 3by + bz = 0 x + 4cy + cz = 0 has a non-zero solution, then a, b, c

If the system of equations x + 4ay + az = 0 and x + 3by + bz = 0 and x + 2cy + cz = 0 have a nonzero solution, then a, b, c ( != 0) are in

The system of equations ax + 4y + z = 0,bx + 3y + z = 0, cx + 2y + z = 0 has non-trivial solution if a, b, c are in

If a !=b , then the system of equation ax + by + bz = 0 bx + ay + bz = 0 and bx + by + az = 0 will have a non-trivial solution, if

If the system of equations bx + ay = c, cx + az = b, cy + bz = a has a unique solution, then

Consider the system of equations (a -1) x -y -z = 0 x -(b -1) y +z = 0 x + y - (c -1) z = 0 Where a, b and c are non-zero real number Statement1 : If x,y,z are not all zero, then ab + bc + ca = abc Statement 2 : abc ge 27

If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy + cz =0 has a non-zero solution, then a, b, c

If the system of equation ax + by + cz = 0, bx + cy + az = 0, cx + ay + bz = 0 has non-trivial solution then find the value of |{:(bc-a^2,ca-b^2,ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2):}|

if a gt b gt c and the system of equations ax + by + cz = 0, bx + cy + az 0 and cx + ay + bz = 0 has a non-trivial solution, then the quadratic equation ax^(2) + bx + c =0 has

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,ome...

    Text Solution

    |

  2. If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab...

    Text Solution

    |

  3. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  4. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  5. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  6. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  7. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  8. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  9. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  10. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  11. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  12. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  13. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  14. A and B are two non-zero square matrices such that AB = O. Then,

    Text Solution

    |

  15. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  16. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  17. If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,...

    Text Solution

    |

  18. The value of |(11,12,13),(12,13,14),(13,14,15)|, is

    Text Solution

    |

  19. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  20. If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}|, then

    Text Solution

    |