Home
Class 11
MATHS
If omega is a cube root of unity, then R...

If `omega` is a cube root of unity, then Root of polynomial is
`|(x + 1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)|`

A

1

B

`omega`

C

`omega^(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the roots of the polynomial represented by the determinant \[ D = \begin{vmatrix} x + 1 & \omega & \omega^2 \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] where \(\omega\) is a cube root of unity, we proceed as follows: ### Step 1: Set the determinant equal to zero To find the roots of the polynomial, we set the determinant \(D\) equal to zero: \[ D = 0 \] ### Step 2: Use properties of cube roots of unity Recall that \(\omega^3 = 1\) and \(1 + \omega + \omega^2 = 0\). This will help simplify our calculations. ### Step 3: Apply row transformations We can simplify the determinant by adding all rows together. Let’s perform the row operation \(R_1 \rightarrow R_1 + R_2 + R_3\): \[ D = \begin{vmatrix} (x + 1) + (x + \omega^2) + (x + \omega) & \omega + 1 + 1 & \omega^2 + 1 + \omega \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] ### Step 4: Simplify using the properties of \(\omega\) Using the property \(1 + \omega + \omega^2 = 0\), we can simplify the first row: \[ D = \begin{vmatrix} 3x + 1 & 0 & 0 \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] ### Step 5: Factor out common terms Now, we can factor out \(x\) from the first row: \[ D = x \begin{vmatrix} 1 & 0 & 0 \\ \omega & x + \omega^2 & 1 \\ \omega^2 & 1 & x + \omega \end{vmatrix} \] ### Step 6: Expand the determinant Now, we can expand the determinant: \[ D = x \left( 1 \cdot \begin{vmatrix} x + \omega^2 & 1 \\ 1 & x + \omega \end{vmatrix} \right) \] Calculating the 2x2 determinant: \[ \begin{vmatrix} x + \omega^2 & 1 \\ 1 & x + \omega \end{vmatrix} = (x + \omega^2)(x + \omega) - 1 \] ### Step 7: Set the determinant to zero Setting the determinant equal to zero gives us: \[ x \left( (x + \omega^2)(x + \omega) - 1 \right) = 0 \] ### Step 8: Solve for \(x\) This gives us one root: \[ x = 0 \] Now, we need to solve the quadratic equation: \[ (x + \omega^2)(x + \omega) - 1 = 0 \] Expanding this: \[ x^2 + (\omega + \omega^2)x + \omega^3 - 1 = 0 \] Since \(\omega + \omega^2 = -1\) and \(\omega^3 = 1\): \[ x^2 - x = 0 \] ### Step 9: Factor the quadratic Factoring gives: \[ x(x - 1) = 0 \] ### Step 10: Final roots The roots are: \[ x = 0, \quad x = 1 \] ### Conclusion Thus, the roots of the polynomial are \(x = 0\) and \(x = 1\). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

If omega is a cube root of unity, then 1+omega = …..

If omega is a cube root of unity, then omega^(3) = ……

If omega is a cube root of unity, then 1+ omega^(2)= …..

If omega is a cube root of unity, then omega + omega^(2)= …..

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If 1.omega, omega^2 are the roots of unity, then Delta=|(1,omega^n,omega^(2n)),(omega^n,omega^(2n),1),(omega^(2n),1,omega^n)| is equal to

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

If omega is an imaginary cube root of unity, then the value of the determinant |(1+omega,omega^2,-omega),(1+omega^2,omega,-omega^2),(omega+omega^2,omega,-omega^2)|

If omega is a cube root of unity, then find the value of the following: (1-omega)(1-omega^2)(1-omega^4)(1-omega^8)

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. If the system of equations x + ay + az = 0 bx + y + bz = 0 cx + ...

    Text Solution

    |

  2. The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sina...

    Text Solution

    |

  3. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  4. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  5. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  6. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  7. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  8. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  9. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  10. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  11. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  12. A and B are two non-zero square matrices such that AB = O. Then,

    Text Solution

    |

  13. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  14. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  15. If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,...

    Text Solution

    |

  16. The value of |(11,12,13),(12,13,14),(13,14,15)|, is

    Text Solution

    |

  17. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  18. If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}|, then

    Text Solution

    |

  19. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  20. A ,\ B are two matrices such that A B and A+B are both defined; sho...

    Text Solution

    |