Home
Class 11
MATHS
If y= sin px and y(n) is the nth derivat...

If y= sin px and `y_(n)` is the nth derivative of y, then
`|{:(y,y_(1),y_(2)),(y_(3),y_(4),y_(5)),(y_(6),y_(7),y_(8)):}|`is

A

`m^(9)`

B

`m^(2)`

C

`m^(3)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the determinant of the matrix formed by \(y\) and its derivatives up to the 8th order, where \(y = \sin(px)\) and \(y_n\) is the nth derivative of \(y\). ### Step-by-Step Solution: 1. **Define the function and its derivatives**: - Let \(y = \sin(px)\). - The derivatives of \(y\) can be computed as follows: - \(y' = \frac{dy}{dx} = p \cos(px)\) - \(y'' = \frac{d^2y}{dx^2} = -p^2 \sin(px)\) - \(y^{(3)} = \frac{d^3y}{dx^3} = -p^3 \cos(px)\) - \(y^{(4)} = \frac{d^4y}{dx^4} = p^4 \sin(px)\) - \(y^{(5)} = \frac{d^5y}{dx^5} = p^5 \cos(px)\) - \(y^{(6)} = \frac{d^6y}{dx^6} = -p^6 \sin(px)\) - \(y^{(7)} = \frac{d^7y}{dx^7} = -p^7 \cos(px)\) - \(y^{(8)} = \frac{d^8y}{dx^8} = p^8 \sin(px)\) 2. **Construct the determinant**: - We need to evaluate the determinant: \[ D = \begin{vmatrix} y & y' & y'' \\ y^{(3)} & y^{(4)} & y^{(5)} \\ y^{(6)} & y^{(7)} & y^{(8)} \end{vmatrix} \] Substituting the derivatives we calculated: \[ D = \begin{vmatrix} \sin(px) & p \cos(px) & -p^2 \sin(px) \\ -p^3 \cos(px) & p^4 \sin(px) & p^5 \cos(px) \\ -p^6 \sin(px) & -p^7 \cos(px) & p^8 \sin(px) \end{vmatrix} \] 3. **Factor out common terms**: - From the second row, we can factor out \(p^3\): \[ D = p^3 \begin{vmatrix} \sin(px) & p \cos(px) & -p^2 \sin(px) \\ -\cos(px) & p \sin(px) & p^2 \cos(px) \\ -p^3 \sin(px) & -p^4 \cos(px) & p^5 \sin(px) \end{vmatrix} \] - From the third row, we can factor out \(-p^6\): \[ D = -p^9 \begin{vmatrix} \sin(px) & p \cos(px) & -p^2 \sin(px) \\ -\cos(px) & p \sin(px) & p^2 \cos(px) \\ \sin(px) & p \cos(px) & -p^2 \sin(px) \end{vmatrix} \] 4. **Row transformation**: - Now, we can perform a row operation \(R_1 + R_3\) to simplify the determinant: \[ D = -p^9 \begin{vmatrix} 0 & 0 & 0 \\ -\cos(px) & p \sin(px) & p^2 \cos(px) \\ \sin(px) & p \cos(px) & -p^2 \sin(px) \end{vmatrix} \] 5. **Evaluate the determinant**: - Since the first row is all zeros, the determinant evaluates to zero: \[ D = 0 \] ### Final Result: Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

if y= sin mx, them the value of the determinant |{:(y,,y_(1),,y_(2)),(y_(3),,y_(4),,y_(5)),(y_(6),,y_(7),,y_(8)):}|" Where " y_(n)=(d^(n)y)/(dx^(n)) " is "

If y=sinp x and y_n is the n t h derivative of y , then |[y, y_1,y_2],[y_3,y_4,y_5],[y_6,y_7,y_8]|i s (a)1 (b) 0 (c) -1 (d) none of these

If x_(1),x_(2) "and" y_(1),y_(2) are the roots of the equations 3x^(2) -18x+9=0 "and" y^(2)-4y+2=0 the value of the determinant |{:(x_(1)x_(2),y_(1)y_(2),1),(x_(1)+x_(2),y_(1)+y_(2),2),(sin(pix_(1)x_(2)),cos (pi//2y_(1)y_(2)),1):}| is

if (x_(1)-x_(2))^(2)+(y_(1)-y_(2))^(2)=a^(2), (x_(2)-x_(3))^(2)+(y_(2)-y_(3))^(2)=b^(2) (x_(3)-x_(1))^(2)+(y_(3)-y_(1))^(2)=c^(2). where a,b,c are positive then prove that 4 |{:(x_(1),,y_(1),,1),(x_(2) ,,y_(2),,1),( x_(3),, y_(3),,1):}| = (a+b+c) (b+c-a) (c+a-b)(a+b-c)

A triangle has vertices A_(i) (x_(i),y_(i)) for i= 1,2,3,. If the orthocenter of triangle is (0,0) then prove that |{:(x_(2)-x_(3),,y_(2)-y_(3),,y_(1)(y_(2)-y_(3))+x_(1)(x_(2)-x_(3))),(x_(3)-x_(1) ,,y_(3)-y_(1),,y_(2)(y_(3)-y_(1))+x_(2)(x_(3)-x_(1))),( x_(1)-x_(2),,y_(1)-y_(2),,y_(3)(y_(1)-y_(2))+x_(3)(x_(1)-x_(2))):}|=0

If y=sinm x , then the value of the determinant |y y_1y_2y_3y_4y_5y_6y_7y_8|,w h e r ey_n=(d^n y)/(dx^n) is m^9 b. m^2 c. m^3 d. none of these

If the coordinates of the vertices of an equilateral triangle with sides of length a are (x_(1),y_(1)),(x_(2),y_(2)) and (x_(3),y_(3)) then |(x_(1),y_(1),1),(x_(2),y_(2),1),(x_(3),y_(3),1)|^2=(3a^(4))/4

If 10y=7x-4 and 12x+18y=1 . Find the value of 4x+6y and 8y-x .

If x^(2)-7y=8, x-y=1 , and y gt 0 , what is the value of y ?

If the standard deviation of n observation x_(1), x_(2),…….,x_(n) is 5 and for another set of n observation y_(1), y_(2),………., y_(n) is 4, then the standard deviation of n observation x_(1)-y_(1), x_(2)-y_(2),………….,x_(n)-y_(n) is

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. If omega is a cube root of unity, then Root of polynomial is |(x + 1...

    Text Solution

    |

  2. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  3. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  4. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  5. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  6. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  7. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  8. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  9. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  10. A and B are two non-zero square matrices such that AB = O. Then,

    Text Solution

    |

  11. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  12. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  13. If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,...

    Text Solution

    |

  14. The value of |(11,12,13),(12,13,14),(13,14,15)|, is

    Text Solution

    |

  15. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  16. If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}|, then

    Text Solution

    |

  17. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  18. A ,\ B are two matrices such that A B and A+B are both defined; sho...

    Text Solution

    |

  19. If omega is an imaginary cube root of unity, then the value of |(a,b o...

    Text Solution

    |

  20. If alpha, beta are non - real numbers satifying x^3-1=0 then the value...

    Text Solution

    |