Home
Class 11
MATHS
If |p b c a q c a b r|=0 , find the valu...

If `|p b c a q c a b r|=0` , find the value of `p/(p-a)+q/(q-b)+r/(r-c),\ p!=a ,\ \ q=b ,\ \ r!=c`

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If |[p, b, c],[ a, q, c],[ a, b, r]|=0, find the value of p/(p-a)+q/(q-b)+r/(r-c),p!=a ,q!=b ,r!=c dot

If a!=p ,b!=q ,c!=r and |[p, b, c ],[a, q, c ],[a ,b, r]|=0, then find the value of p/(p-a)+q/(q-b)+r/(r-c)dot

a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-a)+q/(q-b)+r/(r-c)=

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

The incorrect statement is (A) p →q is logically equivalent to ~p ∨ q. (B) If the truth-values of p, q r are T, F, T respectively, then the truth value of (p ∨ q) ∧ (q ∨ r) is T. (C) ~(p ∨ q ∨ r) = ~p ∧ ~q ∧ ~r (D) The truth-value of p ~ (p ∧ q) is always T

If p+q+r=0=a+b+c , then the value of the determinant |[p a, q b, r c],[ q c ,r a, p b],[ r b, p c, q a]|i s (a) 0 (b) p a+q b+r c (c) 1 (d) none of these

If |[a, p, x],[ b, q, y], [c, r, z]|=16 , then the value of |[p+x, a+x, a+p], [q+y ,b+y, b+q],[ r+z, c+z, c+r]| is (a) 4 (b) 8 (c) 16 (d) 32

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r

If the p t h ,\ q t h\ a n d\ r t h terms of a G.P. are a ,\ b ,\ c respectively, prove that: a^((q-r))dot^b^((r-p))dotc^((p-q))=1.

If a ,b ,a n dc are in A.P. p ,q ,a n dr are in H.P., and a p ,b q ,a n dc r are in G.P., then p/r+r/p is equal to a/c-c/a b. a/c+c/a c. b/q+q/b d. b/q-q/b

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. " If " Delta(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta(2)...

    Text Solution

    |

  2. If y= sin px and y(n) is the nth derivative of y, then |{:(y,y(1),y(...

    Text Solution

    |

  3. If |p b c a q c a b r|=0 , find the value of p/(p-a)+q/(q-b)+r/(r-c),\...

    Text Solution

    |

  4. Using properties of determinants, show that |{:(x, p, q), ( p, x, q)...

    Text Solution

    |

  5. The factors of |(x,a,b),(a,x,b),(a,b,x)|, are

    Text Solution

    |

  6. Let omega=-1/2+i(sqrt(3))/2dot Then the value of the determinant |1 1 ...

    Text Solution

    |

  7. If a+b+c=0, one root of |a-x c b c b-x a b a c-x|=0 is x=1 b. x=2 c. ...

    Text Solution

    |

  8. suppose D= |{:(a(1),,b(1),,c(1)),(a(2),,b(2),,c(2)),(a(3),,b(3),,c(3...

    Text Solution

    |

  9. A and B are two non-zero square matrices such that AB = O. Then,

    Text Solution

    |

  10. The roots of the equation |{:(x-1,1,1),(1,x-1,1),(1,1,x-1):}|=0 are

    Text Solution

    |

  11. From the matrix equation AB=AC, we conclude B=C provided.

    Text Solution

    |

  12. If A=|[1, 1, 1],[a, b, c],[ a^2,b^2,c^2]| , B=|[1,bc, a],[1,ca, b],[1,...

    Text Solution

    |

  13. The value of |(11,12,13),(12,13,14),(13,14,15)|, is

    Text Solution

    |

  14. |{:(x,4, y+z),(y,4,z+x),(z,4,x+y):}| is equal to:

    Text Solution

    |

  15. If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}|, then

    Text Solution

    |

  16. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  17. A ,\ B are two matrices such that A B and A+B are both defined; sho...

    Text Solution

    |

  18. If omega is an imaginary cube root of unity, then the value of |(a,b o...

    Text Solution

    |

  19. If alpha, beta are non - real numbers satifying x^3-1=0 then the value...

    Text Solution

    |

  20. The value of the determinant |(-1,1,1),(1,-1,1),(1,1,-1)| is equal to

    Text Solution

    |