Home
Class 11
MATHS
A root of the equation |[3-x,-6,3],[-6,3...

A root of the equation `|[3-x,-6,3],[-6,3-x,3],[3,3,-6-x]|=0`

A

6

B

3

C

0

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find a root of the equation given by the determinant \(|[3-x,-6,3],[-6,3-x,3],[3,3,-6-x]|=0\), we will calculate the determinant step by step. ### Step 1: Write down the determinant We start with the determinant: \[ D = \begin{vmatrix} 3-x & -6 & 3 \\ -6 & 3-x & 3 \\ 3 & 3 & -6-x \end{vmatrix} \] ### Step 2: Expand the determinant We can expand the determinant using the first row: \[ D = (3-x) \begin{vmatrix} 3-x & 3 \\ 3 & -6-x \end{vmatrix} - (-6) \begin{vmatrix} -6 & 3 \\ 3 & -6-x \end{vmatrix} + 3 \begin{vmatrix} -6 & 3-x \\ 3 & 3 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. **First 2x2 determinant**: \[ \begin{vmatrix} 3-x & 3 \\ 3 & -6-x \end{vmatrix} = (3-x)(-6-x) - (3)(3) = -18 - 3x + 6x + x^2 - 9 = x^2 + 3x - 27 \] 2. **Second 2x2 determinant**: \[ \begin{vmatrix} -6 & 3 \\ 3 & -6-x \end{vmatrix} = (-6)(-6-x) - (3)(3) = 36 + 6x - 9 = 27 + 6x \] 3. **Third 2x2 determinant**: \[ \begin{vmatrix} -6 & 3-x \\ 3 & 3 \end{vmatrix} = (-6)(3) - (3-x)(3) = -18 - (9 - 3x) = -9 + 3x \] ### Step 4: Substitute back into the determinant Now substituting these back into the determinant: \[ D = (3-x)(x^2 + 3x - 27) + 6(27 + 6x) + 3(-9 + 3x) \] ### Step 5: Expand and simplify Expanding each term: 1. \( (3-x)(x^2 + 3x - 27) = 3x^2 + 9x - 81 - x^3 - 3x^2 + 27x = -x^3 + 36x - 81 \) 2. \( 6(27 + 6x) = 162 + 36x \) 3. \( 3(-9 + 3x) = -27 + 9x \) Combining all these: \[ D = -x^3 + 36x - 81 + 162 + 36x - 27 + 9x \] \[ D = -x^3 + 81x + 54 \] ### Step 6: Set the determinant to zero We need to find the roots of: \[ -x^3 + 81x + 54 = 0 \] or equivalently, \[ x^3 - 81x - 54 = 0 \] ### Step 7: Factor the equation We can use the Rational Root Theorem or trial and error to find potential roots. Testing \(x = 0\), \(x = 9\), and \(x = -9\): 1. \(x = 0\): \(0^3 - 81(0) - 54 \neq 0\) 2. \(x = 9\): \(9^3 - 81(9) - 54 = 729 - 729 - 54 = -54 \neq 0\) 3. \(x = -9\): \((-9)^3 - 81(-9) - 54 = -729 + 729 - 54 = -54 \neq 0\) ### Step 8: Identify the roots After testing, we find that: - The roots are \(x = 0\), \(x = 9\), and \(x = -9\). ### Final Answer The roots of the equation are \(x = 0\), \(x = 9\), and \(x = -9\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

One root of the equation |{:(3-x,-6,3),(-6,3-x,3),(3,3,-6-x):}|=0" "is:

Which of the following is not the root of the equation |[x,-6,-1],[ 2,-3x,x-3],[-3, 2x,x+2]|=0? a. 2 b. 0 c. 1 d. -3

The three roots of the equation |[x,3,7],[2,x,2],[7,6,x]| =0 are

Show that x=2 is a root of the equation |(x,-6,-1),( 2,-3x,x-3),(-3,2x,x+2)| =0 and solve it completely.

|[x,-6,-1],[2,-3x,x-3],[-3,2x,x+2]| =0

Find the roots of the equation 3x^2+6x+3=0

The sum of the real roots of the equation |{:(x, -6, -1), (2, -3x, x-3), (-3, 2x, x+2):}| = 0, is equal to

Show that x = 2 is a root of the equation |{:(x, -6, -1),(2,- 3x,x-3),(-3," "2x,x+2):}| = 0 and solve it completely.

The product of real roots of the equation |x|^(6/5)-26|x|^(3/5)-27=0 is

Solve for x , |[x,-6,-1], [ 2,-3x,x-3], [-3, 2x, x+2]| =0.

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of the determinant |(-1,1,1),(1,-1,1),(1,1,-1)| is equal to

    Text Solution

    |

  2. In a third order determinant, each element of the first column consist...

    Text Solution

    |

  3. A root of the equation |[3-x,-6,3],[-6,3-x,3],[3,3,-6-x]|=0

    Text Solution

    |

  4. For positive numbers x, y and z, the numerical value of the determinan...

    Text Solution

    |

  5. Calculate the value of the determinant |{:(1,1,1,1),(1,2,3,4),(1,3,6,1...

    Text Solution

    |

  6. if Delta= |{:(3,,4,,5,,x),(4,,5,,6,,y),(5,,6,,7,,z),(x,,y,,z,,0):}|=0 ...

    Text Solution

    |

  7. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  8. If a,b,and c are the side of a triangle and A,B and C are the angles o...

    Text Solution

    |

  9. If [ ] denotes the greatest integer less than or equal to the real num...

    Text Solution

    |

  10. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |

  11. The determinant |(cos C,tan A,0),(sin B,0,-tan A),(0,sin B,cos C)| h...

    Text Solution

    |

  12. Using the factor theorem it is found that a+b , b+ca n dc+a are three ...

    Text Solution

    |

  13. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  14. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  15. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  16. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  17. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  18. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  19. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  20. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |