Home
Class 11
MATHS
For positive numbers x, y and z, the num...

For positive numbers x, y and z, the numerical value of the determinant` |[1,log_xy,log_xz],[log_yx,1,log_yz],[log_zx,log_zy,1]|`is

A

0

B

log x log y log z

C

1

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To find the numerical value of the determinant \[ D = \begin{vmatrix} 1 & \log_x y & \log_x z \\ \log_y x & 1 & \log_y z \\ \log_z x & \log_z y & 1 \end{vmatrix} \] we will use properties of logarithms and determinants. ### Step-by-step Solution: **Step 1: Rewrite the logarithms using the change of base formula.** Using the property of logarithms, we can rewrite the logarithms in terms of natural logarithms (or any common base): \[ \log_x y = \frac{\log y}{\log x}, \quad \log_x z = \frac{\log z}{\log x}, \quad \log_y z = \frac{\log z}{\log y}, \quad \log_z x = \frac{\log x}{\log z}, \quad \log_z y = \frac{\log y}{\log z} \] Substituting these into the determinant, we get: \[ D = \begin{vmatrix} 1 & \frac{\log y}{\log x} & \frac{\log z}{\log x} \\ \frac{\log x}{\log y} & 1 & \frac{\log z}{\log y} \\ \frac{\log x}{\log z} & \frac{\log y}{\log z} & 1 \end{vmatrix} \] **Step 2: Calculate the determinant using cofactor expansion.** We can expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} 1 & \frac{\log z}{\log y} \\ \frac{\log y}{\log z} & 1 \end{vmatrix} - \frac{\log y}{\log x} \cdot \begin{vmatrix} \frac{\log x}{\log y} & \frac{\log z}{\log y} \\ \frac{\log x}{\log z} & 1 \end{vmatrix} + \frac{\log z}{\log x} \cdot \begin{vmatrix} \frac{\log x}{\log y} & 1 \\ \frac{\log x}{\log z} & \frac{\log y}{\log z} \end{vmatrix} \] **Step 3: Calculate the 2x2 determinants.** 1. First determinant: \[ \begin{vmatrix} 1 & \frac{\log z}{\log y} \\ \frac{\log y}{\log z} & 1 \end{vmatrix} = 1 \cdot 1 - \frac{\log z}{\log y} \cdot \frac{\log y}{\log z} = 1 - 1 = 0 \] 2. Second determinant: \[ \begin{vmatrix} \frac{\log x}{\log y} & \frac{\log z}{\log y} \\ \frac{\log x}{\log z} & 1 \end{vmatrix} = \frac{\log x}{\log y} \cdot 1 - \frac{\log z}{\log y} \cdot \frac{\log x}{\log z} = \frac{\log x}{\log y} - \frac{\log x}{\log y} = 0 \] 3. Third determinant: \[ \begin{vmatrix} \frac{\log x}{\log y} & 1 \\ \frac{\log x}{\log z} & \frac{\log y}{\log z} \end{vmatrix} = \frac{\log x}{\log y} \cdot \frac{\log y}{\log z} - 1 \cdot \frac{\log x}{\log z} = \frac{\log x}{\log z} - \frac{\log x}{\log z} = 0 \] **Step 4: Substitute back into the determinant expression.** Now substituting back into our determinant expression: \[ D = 1 \cdot 0 - \frac{\log y}{\log x} \cdot 0 + \frac{\log z}{\log x} \cdot 0 = 0 \] Thus, the numerical value of the determinant is \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

For positive numbers x ,\ y\ a n d\ z the numerical value of the determinant |1(log)_x y(log)_x z(log)_y x1(log)_y z(log)_z x(log)_z y1| is- a. 0 b. logx y z c. "log"(x+y+z) d. logx\ logy\ logz

For positive numbers x, y and z, the numerical value of the determinant |{:(1,"log"_(x)y, "log"_(x)z),("log"_(y)x, 1, "log"_(y)z),("log"_(z)x, "log"_(z)y, 1):}| is……

The value of the determinant |{:(1,log_ba),(log_ab,1):}| is equal to

for x,x,z gt 0 Prove that |{:(1,,log_(x)y,,log_(x)z),(log_(y)x,,1,,log_(y)z),(log_(z) x,,log_(z)y,,1):}| =0

Prove that the value of each the following determinants is zero: |[logx,logy,logz],[ log2x ,log2y ,log2z ],[log3x, log3y ,log3z]|

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|

Solve the system of equations log_2y=log_4(xy-2),log_9x^2+log_3(x-y)=1 .

Find the value of x satisfying log_a{1+log_b{1+log_c(1+log_px)}}=0 .

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

(log x)^(log x),x gt1

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. In a third order determinant, each element of the first column consist...

    Text Solution

    |

  2. A root of the equation |[3-x,-6,3],[-6,3-x,3],[3,3,-6-x]|=0

    Text Solution

    |

  3. For positive numbers x, y and z, the numerical value of the determinan...

    Text Solution

    |

  4. Calculate the value of the determinant |{:(1,1,1,1),(1,2,3,4),(1,3,6,1...

    Text Solution

    |

  5. if Delta= |{:(3,,4,,5,,x),(4,,5,,6,,y),(5,,6,,7,,z),(x,,y,,z,,0):}|=0 ...

    Text Solution

    |

  6. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  7. If a,b,and c are the side of a triangle and A,B and C are the angles o...

    Text Solution

    |

  8. If [ ] denotes the greatest integer less than or equal to the real num...

    Text Solution

    |

  9. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |

  10. The determinant |(cos C,tan A,0),(sin B,0,-tan A),(0,sin B,cos C)| h...

    Text Solution

    |

  11. Using the factor theorem it is found that a+b , b+ca n dc+a are three ...

    Text Solution

    |

  12. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  13. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  14. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  15. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  16. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  17. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  18. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  19. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  20. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |