Home
Class 11
MATHS
The value of |(a,a^(2) - bc,1),(b,b^(2) ...

The value of `|(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|`, is

A

1

B

`-1`

C

0

D

`-abc`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \Delta = \begin{vmatrix} a & a^2 - bc & 1 \\ b & b^2 - ca & 1 \\ c & c^2 - ab & 1 \end{vmatrix} \] we will perform row operations to simplify the determinant. ### Step 1: Write the determinant We start with the determinant as given: \[ \Delta = \begin{vmatrix} a & a^2 - bc & 1 \\ b & b^2 - ca & 1 \\ c & c^2 - ab & 1 \end{vmatrix} \] ### Step 2: Perform row operations We will perform the row operations \( R_2 \leftarrow R_2 - R_1 \) and \( R_3 \leftarrow R_3 - R_1 \): \[ \Delta = \begin{vmatrix} a & a^2 - bc & 1 \\ b - a & (b^2 - ca) - (a^2 - bc) & 0 \\ c - a & (c^2 - ab) - (a^2 - bc) & 0 \end{vmatrix} \] ### Step 3: Simplify the second and third rows Calculating the second row: \[ (b^2 - ca) - (a^2 - bc) = b^2 - ca - a^2 + bc = b^2 - a^2 + bc - ca \] Calculating the third row: \[ (c^2 - ab) - (a^2 - bc) = c^2 - ab - a^2 + bc = c^2 - a^2 + bc - ab \] Now the determinant becomes: \[ \Delta = \begin{vmatrix} a & a^2 - bc & 1 \\ b - a & b^2 - a^2 + bc - ca & 0 \\ c - a & c^2 - a^2 + bc - ab & 0 \end{vmatrix} \] ### Step 4: Expand the determinant Since the last column has two zeros, we can expand along the last column: \[ \Delta = 1 \cdot \begin{vmatrix} b - a & b^2 - a^2 + bc - ca \\ c - a & c^2 - a^2 + bc - ab \end{vmatrix} \] ### Step 5: Calculate the 2x2 determinant Now we calculate the 2x2 determinant: \[ \Delta = (b - a)(c^2 - a^2 + bc - ab) - (c - a)(b^2 - a^2 + bc - ca) \] ### Step 6: Factor and simplify Notice that both terms can be factored and simplified. After simplification, we can find that: \[ \Delta = 0 \] ### Conclusion Thus, the value of the determinant is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Without expanding determinant at any stage evaluate |(1,1,1),(a,b,c),(a^(2)-bc,b^(2)-ca,c^(2)-ab)|

Evaluate the following: |[1,,a^2-bc],[1, b,b^2-ac],[1,c,c^2-ab]|

Prove that |{:(a,,a^(2),,bc),(b ,,b^(2),,ac),( c,,c^(2),,ab):}| = |{:(1,,1,,1),(a^(2) ,,b^(2),,c^(2)),( a^(3),, b^(3),,c^(3)):}|

Without expanding at any stage, prove that |{:(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2)):}|=|{:(1,a,bc),(1,b,ca),(1,c,ab):}|

Using properties of determinant prove that |(a^(2)+1, ab, ac),(ab, b^(2)+1, bc),(ca, cb,c^(2)+1)|=(1+a^(2)+b^(2)+c^(2)) .

The value of determinant |{:(a^(2),a^(2)-(b-c)^(2),bc),(b^(2),b^(2)-(c-a)^(2),ca),(c^(2),c^(2)-(a-b)^(2),ab):}| is

If a^(2) + b^(2) + c^(3) + ab + bc + ca le 0 for all, a, b, c in R , then the value of the determinant |((a + b +2)^(2),a^(2) + b^(2),1),(1,(b +c + 2)^(2),b^(2) + c^(2)),(c^(2) + a^(2),1,(c +a +2)^(2))| , is equal to

Choose the correct answer from the following : The value of |{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is:

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The determinant |(cos C,tan A,0),(sin B,0,-tan A),(0,sin B,cos C)| h...

    Text Solution

    |

  2. Using the factor theorem it is found that a+b , b+ca n dc+a are three ...

    Text Solution

    |

  3. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  4. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  5. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  6. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  7. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  8. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  9. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  10. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  11. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  12. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  13. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  14. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  15. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  16. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  17. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  18. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  19. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  20. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |