Home
Class 11
MATHS
The repeated factor of the determinant ...

The repeated factor of the determinant
`|(y +z,x,y),(z +x,z,x),(x +y,y,z)|`, is

A

`x-z`

B

`x -y`

C

`y -z`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the repeated factor of the determinant \[ D = \begin{vmatrix} y + z & x & y \\ z + x & z & x \\ x + y & y & z \end{vmatrix} \] we will perform some row operations and simplify the determinant step by step. ### Step 1: Apply Row Operation We will add all three rows together and replace the first row with this sum. \[ R_1 \rightarrow R_1 + R_2 + R_3 \] Calculating the new first row: - First element: \((y + z) + (z + x) + (x + y) = 2x + 2y + 2z = 2(x + y + z)\) - Second element: \(x + z + y = x + y + z\) - Third element: \(y + x + z = x + y + z\) So, the determinant becomes: \[ D = \begin{vmatrix} 2(x + y + z) & x + y + z & x + y + z \\ z + x & z & x \\ x + y & y & z \end{vmatrix} \] ### Step 2: Factor Out Common Terms Notice that the first row has a common factor of \(x + y + z\): \[ D = (x + y + z) \begin{vmatrix} 2 & 1 & 1 \\ z + x & z & x \\ x + y & y & z \end{vmatrix} \] ### Step 3: Expand the Determinant Now we will expand the determinant: \[ D = (x + y + z) \left[ 2 \begin{vmatrix} z & x \\ y & z \end{vmatrix} - 1 \begin{vmatrix} z + x & x \\ x + y & z \end{vmatrix} + 1 \begin{vmatrix} z + x & z \\ x + y & y \end{vmatrix} \right] \] Calculating the smaller determinants: 1. \(\begin{vmatrix} z & x \\ y & z \end{vmatrix} = z^2 - xy\) 2. \(\begin{vmatrix} z + x & x \\ x + y & z \end{vmatrix} = (z + x)z - x(x + y) = z^2 + xz - x^2 - xy\) 3. \(\begin{vmatrix} z + x & z \\ x + y & y \end{vmatrix} = (z + x)y - z(x + y) = zy + xy - zx - zy = xy - zx\) ### Step 4: Substitute Back Substituting these back into the determinant: \[ D = (x + y + z) \left[ 2(z^2 - xy) - (z^2 + xz - x^2 - xy) + (xy - zx) \right] \] ### Step 5: Simplify Now we simplify: \[ = (x + y + z) \left[ 2z^2 - 2xy - z^2 - xz + x^2 + xy + xy - zx \right] \] Combining like terms: \[ = (x + y + z) \left[ z^2 - xz + x^2 - 2xy \right] \] ### Step 6: Factor Further Notice that \(z^2 - xz + x^2 - 2xy\) can be rewritten as: \[ = (x - z)^2 \] ### Final Result Thus, we have: \[ D = (x + y + z)(x - z)^2 \] The repeated factor of the determinant is: \[ \boxed{(x - z)} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Find the value of the "determinant" |{:(1,x,y+z),(1,y,z+x),(1,z,x+y):}|

evaluate: |(a+x,y,z),(x,a+y,z),(x,y,a+z)|

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

Using properties of determinants, prove that |{:(y + z ,z + x ,x + y ),(z + x ,x + y ,y + z),(x + y ,y + z,z + x ):}|=2 |{:(x, y, z),(y, z, x),(z, x, y):}|= - 2 (x^(3) + y^(3) + z^(3) - 3xyz)

Using properties of determinants, prove that |(a+x, y, z),(x, a+y, z),(x, y,a+z)|=a^2(a+x+y+z)

The value of the determinant |[log_a(x/y), log_a(y/z), log_a(z/x)], [log_b (y/z), log_b (z/x), log_b (x/y)], [log_c (z/x), log_c (x/y), log_c (y/z)]|

The determinant |x p+y x y y p+z y z0x p+y y p+z|=0 if x ,y ,z

Using properties of determinants, prove that |{:(x,y,z),(x^(2),y^(2),z^(2)),(y+z,z+x,x+y):}|=(x-y)(y-z)(z-x)(x+y+z)

By using properties of determinants. Show that: |[x,x^2,y z],[ y, y^2,z x],[ z, z^2,x y]|=(x-y)(y-z)(z-x)(x y+y z+z x)

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |