Home
Class 11
MATHS
The determinant Delta = |(b,c,b alpha ...

The determinant
`Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha + c,c alpha + d,a a^(3) - c alpha)|`
is equal to zero, if

A

b, c, d are in A.P

B

b, c, d are in G.P

C

b, c, d are in H.P

D

`alpha` is a root of `ax^(3) - cx - d = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to analyze the determinant and find the conditions under which it equals zero. The determinant is given as: \[ \Delta = \begin{vmatrix} b & c & b\alpha + c \\ c & d & c\alpha + d \\ b\alpha + c & c\alpha + d & a\alpha^3 - c\alpha \end{vmatrix} \] ### Step 1: Apply Column Operations We will perform the column operation \( C_3 \to C_3 - \alpha C_1 - C_2 \). This operation will help simplify the determinant. \[ C_3 = (b\alpha + c) - \alpha(b) - (c) = 0 \] \[ C_3 = (c\alpha + d) - \alpha(c) - (d) = 0 \] After performing these operations, the determinant simplifies to: \[ \Delta = \begin{vmatrix} b & c & 0 \\ c & d & 0 \\ 0 & 0 & a\alpha^3 - 3c\alpha - b\alpha^2 - d \end{vmatrix} \] ### Step 2: Calculate the Determinant The determinant can now be calculated as follows: \[ \Delta = 0 \cdot \begin{vmatrix} c & 0 \\ 0 & a\alpha^3 - 3c\alpha - b\alpha^2 - d \end{vmatrix} - 0 + b \cdot \begin{vmatrix} c & 0 \\ 0 & a\alpha^3 - 3c\alpha - b\alpha^2 - d \end{vmatrix} \] Since the first column has been reduced to zeros, we only need to consider the last term: \[ \Delta = b \cdot (c(a\alpha^3 - 3c\alpha - b\alpha^2 - d)) \] ### Step 3: Set the Determinant to Zero For the determinant to equal zero, we need: \[ b \cdot c(a\alpha^3 - 3c\alpha - b\alpha^2 - d) = 0 \] This means either \( b = 0 \), \( c = 0 \), or: \[ a\alpha^3 - 3c\alpha - b\alpha^2 - d = 0 \] ### Step 4: Analyze the Conditions 1. If \( b = 0 \) or \( c = 0 \), the determinant will be zero. 2. The polynomial \( a\alpha^3 - 3c\alpha - b\alpha^2 - d = 0 \) gives us a cubic equation in \( \alpha \). ### Conclusion The determinant \( \Delta \) is equal to zero if either \( b \) or \( c \) is zero, or \( \alpha \) is a root of the cubic equation \( a\alpha^3 - b\alpha^2 - 3c\alpha - d = 0 \). Thus, the correct condition is that \( b, c, d \) are in geometric progression (GP) when \( bd = c^2 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

In Delta ABC , prove that c cos (A - alpha) + a cos (C + alpha) = b cos alpha

If a sec alpha-c tan alpha=d and b sec alpha + d tan alpha=c , then eliminate alpha from above equations.

Let alpha be a repeated root of a quadratic equation f(x)=0 and A(x),B(x),C(x) be polynomials of degrees 3, 4, and 5, respectively, then show that |(A(x),B(x),C(x)) ,(A(alpha),B(alpha),C(alpha)),(A '(alpha),B '(alpha),C '(alpha))| is divisible by f(x) , where prime (') denotes the derivatives.

For determinant |((a^2+b^2)/c,c,c),(a,(b^2+c^2)/a,a),(b,b,(c^2+a^2)/b)|=alpha abc, then the value of alpha is -

If n=pi/(4alpha), then tan alpha tan 2alpha tan 3 alpha ... tan(2n-1)alpha is equal to (a) 1 (b) 1/2 (c) 2 (d) 1/3

The value of the determinant |(alpha,beta,l),(alpha,x, n),(alpha,beta,x)| is independent of l b. independent of n c. alpha(x-l)(x-beta) d. alphabeta(x-l)(x-n)

If alpha_r=(cos2rpi+isin2rpi)^(1/10) , then |(alpha_1, alpha_2, alpha_4),(alpha_2, alpha_3, alpha_5),(alpha_3, alpha_4, alpha_6)|= (A) alpha_5 (B) alpha_7 (C) 0 (D) none of these

The value of int_0^(pi/2) sin|2x-alpha|dx, where alpha in [0,pi], is (a) 1-cos alpha (b) 1+cos alpha (c) 1 (d) cos alpha

Let alpha be a repeated root of a quadratic equation f(x)=0a n dA(x),B(x),C(x) be polynomials of degrees 3, 4, and 5, respectively, then show that |A(x)B(x)C(x)A(alpha)B(alpha)C(alpha)A '(alpha)B '(alpha)C '(alpha)| is divisible by f(x) , where prime (') denotes the derivatives.

If alpha=\ \ ^m C_2,\ then find the value of \ ^(alpha)C_2dot

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |