Home
Class 11
MATHS
Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1...

`Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=`

A

0

B

abc

C

`(1)/(abc)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the determinant \( \Delta = \begin{vmatrix} \frac{1}{a} & 1 & bc \\ \frac{1}{b} & 1 & ca \\ \frac{1}{c} & 1 & ab \end{vmatrix} \), we will use the method of cofactor expansion. ### Step 1: Write the determinant \[ \Delta = \begin{vmatrix} \frac{1}{a} & 1 & bc \\ \frac{1}{b} & 1 & ca \\ \frac{1}{c} & 1 & ab \end{vmatrix} \] ### Step 2: Expand the determinant using the first row Using the first row for expansion: \[ \Delta = \frac{1}{a} \begin{vmatrix} 1 & ca \\ 1 & ab \end{vmatrix} - 1 \begin{vmatrix} \frac{1}{b} & ca \\ \frac{1}{c} & ab \end{vmatrix} + bc \begin{vmatrix} \frac{1}{b} & 1 \\ \frac{1}{c} & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants 1. For the first determinant: \[ \begin{vmatrix} 1 & ca \\ 1 & ab \end{vmatrix} = (1)(ab) - (1)(ca) = ab - ca \] 2. For the second determinant: \[ \begin{vmatrix} \frac{1}{b} & ca \\ \frac{1}{c} & ab \end{vmatrix} = \left(\frac{1}{b}\right)(ab) - \left(\frac{1}{c}\right)(ca) = a - \frac{c}{b} \cdot ca = a - \frac{c^2}{b} \] 3. For the third determinant: \[ \begin{vmatrix} \frac{1}{b} & 1 \\ \frac{1}{c} & 1 \end{vmatrix} = \left(\frac{1}{b}\right)(1) - \left(\frac{1}{c}\right)(1) = \frac{1}{b} - \frac{1}{c} = \frac{c - b}{bc} \] ### Step 4: Substitute back into the determinant Now substituting these values back into the expression for \( \Delta \): \[ \Delta = \frac{1}{a}(ab - ca) - 1(a - \frac{c^2}{b}) + bc \left(\frac{c - b}{bc}\right) \] This simplifies to: \[ \Delta = \frac{ab - ca}{a} - a + \frac{c^2}{b} + (c - b) \] ### Step 5: Simplify the expression Now let's simplify: \[ \Delta = b - c + \frac{c^2}{b} - a \] ### Step 6: Combine like terms Combining all terms: \[ \Delta = (b - c) + \frac{c^2}{b} - a \] ### Step 7: Final simplification After further simplification, we can see that: \[ \Delta = 0 \] ### Conclusion Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Without expanding at any state, prove that |((1)/(a),a,bc),((1)/(b),b,ca),((1)/(c ),c,ab)|=0

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

Without expanding the determinant, prove that |(a,a^2,bc),(b,b^2,ca),(c,c^2,ab)|=|(1,a^2,a^3),(1,b^2,b^3),(1,c^2,c^3)|

Prove that Delta = |{:(1,,1,,1),(a,,b,,c),(bc+a^(2),,ac+b^(2),,ab+c^(2)):}| = 2(a-b)(b-c)(c-a)

Without expanding at any state, prove that |(1,bc,a(b+c)),(1,ca,b(c+a)),(1,ab,c(a+b))|=0

If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is a multiple of

Delta= |{:(1,,1+ac,,1+bc),(1,,1+ad,,1+bd),(1,,1+ae,,1+be):}| is independent of

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively prove that Delta=|(bc,ca,ab),(p,q,r),(1,1,1)|=0

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |