Home
Class 11
MATHS
If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, ...

If `1 + (1)/(a) + (1)/(b) + (1)/(c) = 0`, then
`Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)|` is equal to

A

0

B

abc

C

`-abc`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta = |(1 + a, 1, 1), (1, 1 + b, 1), (1, 1, 1 + c)| \) given the condition \( 1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0 \). ### Step 1: Write the Determinant We start with the determinant: \[ \Delta = \begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix} \] ### Step 2: Simplify the Determinant We can perform column operations to simplify the determinant. Let's change the second column by subtracting the third column from it: \[ \Delta = \begin{vmatrix} 1 + a & 1 - 1 & 1 \\ 1 & (1 + b) - 1 & 1 \\ 1 & 1 - (1 + c) & 1 + c \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 1 + a & 0 & 1 \\ 1 & b & 1 \\ 1 & -c & 1 + c \end{vmatrix} \] ### Step 3: Further Simplification Next, we can perform a row operation by subtracting the first row from the second and third rows: \[ \Delta = \begin{vmatrix} 1 + a & 0 & 1 \\ 1 - (1 + a) & b & 1 - 1 \\ 1 - (1 + a) & -c & (1 + c) - 1 \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 1 + a & 0 & 1 \\ -a & b & 0 \\ -a & -c & c \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we can calculate the determinant using the formula for a \(3 \times 3\) determinant: \[ \Delta = (1 + a) \begin{vmatrix} b & 0 \\ -c & c \end{vmatrix} - 0 + 1 \begin{vmatrix} -a & b \\ -a & -c \end{vmatrix} \] Calculating the first determinant: \[ \begin{vmatrix} b & 0 \\ -c & c \end{vmatrix} = bc \] Calculating the second determinant: \[ \begin{vmatrix} -a & b \\ -a & -c \end{vmatrix} = (-a)(-c) - (b)(-a) = ac + ab = a(c + b) \] Thus, we have: \[ \Delta = (1 + a)bc + a(c + b) \] ### Step 5: Substitute the Given Condition Now, we substitute the condition \(1 + \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0\) which implies: \[ 1 + \frac{bc + ac + ab}{abc} = 0 \implies bc + ac + ab = -abc \] Substituting this back into our expression for \(\Delta\): \[ \Delta = (1 + a)(bc) + a(c + b) = (1 + a)(bc) + a(c + b) \] ### Step 6: Final Calculation Combining terms, we can express \(\Delta\) in terms of \(abc\): \[ \Delta = abc \cdot 0 = 0 \] Thus, the value of the determinant \( \Delta \) is: \[ \Delta = 0 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

|{:(1+a,c,1+bc),(1+a,b,1+bc),(1+a,e,1+bc):}| is equal to

Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

If (1)/(a)+(1)/(c )=(1)/(2b-a)+(1)/(2b-c) , then

Show that 1+(1)/(a)+(1)/(b)+(1)/(c ) is a factor of |(1+a, 1, 1),(1, 1+b, 1),(1,1,1+c)| .

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0 , then the value of (1)/(a) + (1)/(b) + (1)/(c) is

If a+(1)/(b)=1 and b+(1)/(c)=1 then show that c+1/a=1

a^(−1) + b^(−1) + c^(−1) = 0 such that |[1+a,1,1,],[1,1+b,1,],[1,1,1+c,]| =△ then the value of △ is

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |