Home
Class 11
MATHS
If a, b and c are all different from zer...

If a, b and c are all different from zero and
`Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| = 0`, then the value of `(1)/(a) + (1)/(b) + (1)/(c)` is

A

abc

B

`(1)/(abc)`

C

`-a -b -c`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) given that the determinant \(\Delta = |(1 + a, 1, 1), (1, 1 + b, 1), (1, 1, 1 + c)| = 0\). ### Step-by-Step Solution: 1. **Set Up the Determinant**: \[ \Delta = \begin{vmatrix} 1 + a & 1 & 1 \\ 1 & 1 + b & 1 \\ 1 & 1 & 1 + c \end{vmatrix} \] 2. **Expand the Determinant**: We can use the formula for the determinant of a \(3 \times 3\) matrix: \[ \Delta = (1 + a)\begin{vmatrix} 1 + b & 1 \\ 1 & 1 + c \end{vmatrix} - 1\begin{vmatrix} 1 & 1 \\ 1 & 1 + c \end{vmatrix} + 1\begin{vmatrix} 1 & 1 + b \\ 1 & 1 \end{vmatrix} \] 3. **Calculate the 2x2 Determinants**: - First determinant: \[ \begin{vmatrix} 1 + b & 1 \\ 1 & 1 + c \end{vmatrix} = (1 + b)(1 + c) - 1 \cdot 1 = 1 + b + c + bc - 1 = b + c + bc \] - Second determinant: \[ \begin{vmatrix} 1 & 1 \\ 1 & 1 + c \end{vmatrix} = 1(1 + c) - 1 \cdot 1 = 1 + c - 1 = c \] - Third determinant: \[ \begin{vmatrix} 1 & 1 + b \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot (1 + b) = 1 - (1 + b) = -b \] 4. **Substituting Back**: Now substituting these back into the determinant expression: \[ \Delta = (1 + a)(b + c + bc) - c - b \] Expanding this gives: \[ \Delta = (1 + a)(b + c + bc) - c - b = b + c + bc + ab + ac + abc - c - b \] Simplifying: \[ \Delta = ab + ac + abc \] 5. **Setting the Determinant to Zero**: Since we know \(\Delta = 0\): \[ ab + ac + abc = 0 \] 6. **Rearranging the Equation**: Rearranging gives: \[ abc = - (ab + ac) \] 7. **Finding the Value of \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\)**: We can express \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) as: \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{bc + ac + ab}{abc} \] Substituting \(abc = - (ab + ac)\): \[ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \frac{-(ab + ac)}{-abc} = \frac{ab + ac}{abc} = -1 \] ### Final Answer: Thus, the value of \(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\) is \(-1\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

A=[(a,1,0),(1,b,d),(1,b,c)] then find the value of |A|

If a ,b and c are all non-zero and |(1+a,1,1),( 1,1+b,1),(1,1,1+c)|=0, then prove that 1/a+1/b+1/c+1=0

In DeltaABC, Delta = 6, abc = 60, r=1 . Then the value of (1)/(a) + (1)/(b) + (1)/(c) is nearly

If a ,b and c are all non-zero and |[1+a,1, 1],[ 1,1+b,1],[1,1,1+c]|=0, then prove that 1/a+1/b+1/c+1=0

The value of Delta = |(1,a,b +c),(1,b,c +a),(1,c,a +b)| , is

If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0 , then Delta = |(1 +a,1,1),(1,1 +b,1),(1,1,1 +c)| is equal to

Prove that |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| =abc (1+(1)/(a)+(1)/(b)+(1)/(c))

If a,b, and c are all different and if |{:(a,a^(2),1+a^(3)),(b,b^(2),1+b^(3)),(c,c^(2),1+c^(3)):}| =0 Prove that abc =-1.

If C = 2 cos theta , then the value of the determinant Delta = |(C,1,0),(1,C,1),(6,1,c)| , is

If a, b, c are even natural numbers, then Delta=|{:(a-1,a,a+1),(b-1,b,b+1),(c-1,c,c+1):}| is a multiple of

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |