Home
Class 11
MATHS
In a Delta ABC, a, b, c are sides and A,...

In a `Delta ABC`, a, b, c are sides and A, B, C are angles opposite to them, then the value of the determinant
`|(a^(2),b sin A,c sin A),(b sin A,1,cos A),(c sin A,cos A,1)|`, is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ D = \begin{vmatrix} a^2 & b \sin A & c \sin A \\ b \sin A & 1 & \cos A \\ c \sin A & \cos A & 1 \end{vmatrix} \] we will use the properties of determinants to simplify and calculate it step by step. ### Step 1: Expand the Determinant We can expand the determinant using the first row: \[ D = a^2 \begin{vmatrix} 1 & \cos A \\ \cos A & 1 \end{vmatrix} - b \sin A \begin{vmatrix} b \sin A & \cos A \\ c \sin A & 1 \end{vmatrix} + c \sin A \begin{vmatrix} b \sin A & 1 \\ c \sin A & \cos A \end{vmatrix} \] ### Step 2: Calculate the 2x2 Determinants 1. **First 2x2 determinant:** \[ \begin{vmatrix} 1 & \cos A \\ \cos A & 1 \end{vmatrix} = (1)(1) - (\cos A)(\cos A) = 1 - \cos^2 A = \sin^2 A \] 2. **Second 2x2 determinant:** \[ \begin{vmatrix} b \sin A & \cos A \\ c \sin A & 1 \end{vmatrix} = (b \sin A)(1) - (\cos A)(c \sin A) = b \sin A - c \sin A \cos A \] 3. **Third 2x2 determinant:** \[ \begin{vmatrix} b \sin A & 1 \\ c \sin A & \cos A \end{vmatrix} = (b \sin A)(\cos A) - (1)(c \sin A) = b \sin A \cos A - c \sin A \] ### Step 3: Substitute Back into the Determinant Now substituting these values back into the expression for \(D\): \[ D = a^2 \sin^2 A - b \sin A (b \sin A - c \sin A \cos A) + c \sin A (b \sin A \cos A - c \sin A) \] ### Step 4: Simplify the Expression Expanding the terms: 1. The first term remains \(a^2 \sin^2 A\). 2. The second term becomes: \[ -b \sin A (b \sin A) + b c \sin^2 A \cos A = -b^2 \sin^2 A + b c \sin^2 A \cos A \] 3. The third term becomes: \[ c \sin A (b \sin A \cos A) - c^2 \sin A = b c \sin^2 A \cos A - c^2 \sin A \] Combining all these: \[ D = a^2 \sin^2 A - b^2 \sin^2 A + 2bc \sin^2 A \cos A - c^2 \sin A \] ### Step 5: Factor Out Common Terms Notice that we can factor out \(\sin^2 A\): \[ D = \sin^2 A (a^2 - b^2 + 2bc \cos A - c^2) \] ### Step 6: Use the Cosine Rule Using the cosine rule in triangle \(ABC\): \[ \cos A = \frac{b^2 + c^2 - a^2}{2bc} \] Substituting this into our expression gives: \[ D = \sin^2 A \left(a^2 - b^2 - c^2 + 2bc \left(\frac{b^2 + c^2 - a^2}{2bc}\right)\right) \] This simplifies to: \[ D = \sin^2 A \cdot 0 = 0 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to

In a delta ABC, a,c, A are given and b_(1) , b_(2) are two values of third side b such that b_(2)=2b_(1). Then, the value of sin A.

If in a Delta ABC, sin ^(3) A + sin ^(3) B+ sin ^(3) C =3 sin A .Sin B. sin C, then find the valueof determinant |{:(a,b,c),(b,c,a),(c,a,b):}|.

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

A triangle ABC is such that sin(2A+B) =1/2 and If A, B and C are in A.P., then find the value of A and C

In a triangle ABC, sin A- cos B = Cos C , then angle B is

If the angles A, B and C of a triangle are in an arithmetic progression and if a, b and c denote the lengths of the sides opposite to A, B and C respectively, then the value of the expression (a)/(c) sin 2C + (c)/(a) sin 2A is

In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

In a Delta ABC , if cosA cos B cos C= (sqrt3-1)/(8) and sin A sin B sin C= (3+ sqrt3)/(8) , then The value of tan A tan B tanC is

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |