Home
Class 11
MATHS
If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -...

If `|(-12,0,lamda),(0,2,-1),(2,1,15)| = -360`, then the value of `lamda` is

A

`-1`

B

`-2`

C

`-3`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \(|(-12, 0, \lambda), (0, 2, -1), (2, 1, 15)| = -360\), we will follow these steps: ### Step 1: Write the determinant We have the determinant: \[ D = \begin{vmatrix} -12 & 0 & \lambda \\ 0 & 2 & -1 \\ 2 & 1 & 15 \end{vmatrix} \] ### Step 2: Expand the determinant along the first row Using the formula for the determinant of a 3x3 matrix, we expand along the first row: \[ D = -12 \begin{vmatrix} 2 & -1 \\ 1 & 15 \end{vmatrix} - 0 + \lambda \begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we calculate the two 2x2 determinants: 1. For \(\begin{vmatrix} 2 & -1 \\ 1 & 15 \end{vmatrix}\): \[ = (2 \cdot 15) - (-1 \cdot 1) = 30 + 1 = 31 \] 2. For \(\begin{vmatrix} 0 & 2 \\ 2 & 1 \end{vmatrix}\): \[ = (0 \cdot 1) - (2 \cdot 2) = 0 - 4 = -4 \] ### Step 4: Substitute back into the determinant equation Substituting these values back into the determinant equation: \[ D = -12 \cdot 31 + \lambda \cdot (-4) \] \[ D = -372 - 4\lambda \] ### Step 5: Set the determinant equal to -360 Now we set the determinant equal to -360: \[ -372 - 4\lambda = -360 \] ### Step 6: Solve for \(\lambda\) Rearranging the equation gives: \[ -4\lambda = -360 + 372 \] \[ -4\lambda = 12 \] \[ \lambda = \frac{12}{-4} = -3 \] ### Conclusion Thus, the value of \(\lambda\) is \(-3\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

Let A=[{:(1,2,1),(0,1,-1),(3,1,1):}] . Find the sum of all the value of lamda for which there exists a column vertor Xne0 such that AX=lamdaX .

If the following equations x+y-3z = 0, (1+lamda)x + (2+lamda) y - 8z = 0, x-(1+lamda)y + (2+lamda)z = 0 are consistent then the value of lamda is

If the matrix [(1,3,lamda+2),(2,4,8),(3,5,10)] is singular then find lamda

if f(x) ={{:((8^(x)-4^(x)-2^(x)+1)/(x^(2)),xgt0),( x^(2) , x le 0):} is continuous at x=0 , then the value of lamda is

If the straight lines (x+1)/2=(-y+1)/3=(z+1)/(-2)and (x-3)/1=(y-lamda)/2=z/3 intersect then the value of lamda is (A) -5/8 (B) -17/8 (C) -13/8 (D) -15/8

Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

Let alpha, beta be two real roots of the equation cot ^ 2 x - 2 lamda cot x + 3 = 0 , lamda in R . If cot ( alpha + beta ) = (1)/(2) , then value of lamda is :

If underset(xto0)lim(f(x))/(sin^(2)x)=8,underset(xto0)lim(g(x))/(2cosx-xe^(x)+x^(3)+x-2)=lamda" and " underset(xto0)lim(1+2f(x))^((1)/(g(x)))=(1)/(e)," then" The value of lamda is

If a circle S(x,y)=0 touches the point (2,3) of the line x+y=5 and S(1,2)=0, then radius of such circle is (1)/(sqrtlamda) units then the value of lamda is.

If |a_(i)|lt1lamda_(i)ge0 for i=1,2,3,.......nandlamda_(1)+lamda_(2)+.......+lamda_(n)=1 then the value of |lamda_(1)a_(1)+lamda_(2)a_(2)+.......+lamda_(n)a_(n)| is :

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |