Home
Class 11
MATHS
If a, b gt 0 and Delta (x)= |(x,a,a),(b,...

If `a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|`, then

A

`Delta(x)` is increasing on `(-sqrt(ab), sqrt(ab))`

B

`Delta (x)` is decreasing on `(sqrt(ab), oo)`

C

`Delta(x)` has a local manimum at `x = sqrt(ab)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \( \Delta(x) = \begin{vmatrix} x & a & a \\ b & x & a \\ b & b & x \end{vmatrix} \) and analyze its behavior. ### Step 1: Calculate the determinant We will expand the determinant using the first row: \[ \Delta(x) = x \begin{vmatrix} x & a \\ b & x \end{vmatrix} - a \begin{vmatrix} b & a \\ b & x \end{vmatrix} + a \begin{vmatrix} b & x \\ b & b \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} x & a \\ b & x \end{vmatrix} = x^2 - ab \) 2. \( \begin{vmatrix} b & a \\ b & x \end{vmatrix} = bx - ab \) 3. \( \begin{vmatrix} b & x \\ b & b \end{vmatrix} = b^2 - bx \) Substituting these back into the expression for \( \Delta(x) \): \[ \Delta(x) = x(x^2 - ab) - a(bx - ab) + a(b^2 - bx) \] Simplifying this: \[ \Delta(x) = x^3 - abx - abx + a^2b + ab^2 - abx \] Combining like terms: \[ \Delta(x) = x^3 - 3abx + a^2b + ab^2 \] ### Step 2: Find the first derivative Next, we find the first derivative \( \Delta'(x) \): \[ \Delta'(x) = \frac{d}{dx}(x^3 - 3abx + a^2b + ab^2) = 3x^2 - 3ab \] ### Step 3: Set the first derivative to zero To find critical points, we set \( \Delta'(x) = 0 \): \[ 3x^2 - 3ab = 0 \implies x^2 = ab \implies x = \pm \sqrt{ab} \] ### Step 4: Analyze the sign of the first derivative We will analyze the sign of \( \Delta'(x) \): - For \( x < -\sqrt{ab} \): \( \Delta'(x) > 0 \) (increasing) - For \( -\sqrt{ab} < x < \sqrt{ab} \): \( \Delta'(x) < 0 \) (decreasing) - For \( x > \sqrt{ab} \): \( \Delta'(x) > 0 \) (increasing) ### Step 5: Find the second derivative Now, we find the second derivative \( \Delta''(x) \): \[ \Delta''(x) = \frac{d}{dx}(3x^2 - 3ab) = 6x \] ### Step 6: Determine local maxima and minima Evaluate the second derivative at the critical points: 1. At \( x = \sqrt{ab} \): \[ \Delta''(\sqrt{ab}) = 6\sqrt{ab} > 0 \quad \text{(local minimum)} \] 2. At \( x = -\sqrt{ab} \): \[ \Delta''(-\sqrt{ab}) = -6\sqrt{ab} < 0 \quad \text{(local maximum)} \] ### Conclusion Thus, we conclude that: - \( \Delta(x) \) has a local maximum at \( x = -\sqrt{ab} \) - \( \Delta(x) \) has a local minimum at \( x = \sqrt{ab} \)
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|6 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

" if " Delta = |{:(-x,,a,,b),(b,,-x,,a),(a,,b,,-x):}|" then a factor of " Delta " is "

The factors of |(x,a,b),(a,x,b),(a,b,x)| , are

if a+b+c=0 then Delta=|{:(a-x,c,b),(c,b-x,a),(b,a,c-x):}|=0 is

" If " Delta_(1) =|{:(x,,b,,b),(a,,x,,b),(a,,a,,x):}|" and " Delta_(2)= |{:(x,,b),(a,,x):}| are the given determinants then

If a >0 and discriminant of a x^2+2b x+c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| is a. +v e b. (a c-b)^2(a x^2+2b x+c) c. -v e d. 0

If Delta(x)=|{:(a,b,c),(6,4,3),(x,x^(2),x^(3)):}| then find int_(0)^(1) Delta (x) dx.

If f(x)=|{:(0,x-a,x-b),(x+a,0,x-c),(x+b,x+c,0):}| , then

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

If b gt 1, x gt 0 and (2x)^(log_(b) 2)-(3x)^(log_(b) 3)=0 , then x is

If x, a, b, c are real and (x-a+b)^(2)+(x-b+c)^(2)=0 , then a, b, c are in

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Exercise
  1. The value of |(a,a^(2) - bc,1),(b,b^(2) - ca,1),(c,c^(2) - ab,1)|, is

    Text Solution

    |

  2. Find the number of real root of the equation |0x-a x-b x+a0x-c x+b x+c...

    Text Solution

    |

  3. The repeated factor of the determinant |(y +z,x,y),(z +x,z,x),(x +y,...

    Text Solution

    |

  4. The value of the determinant Delta = |((1 - a(1)^(3) b(1)^(3))/(1 - ...

    Text Solution

    |

  5. The determinant Delta = |(b,c,b alpha +c),(c,d,c alpha + d),(b alpha...

    Text Solution

    |

  6. Delta = |(1//a,1,bc),(1//b,1,ca),(1//c,1,ab)|=

    Text Solution

    |

  7. If |(1 +ax,1 +bx,1 + bx),(1 +a(1) x,1 +b(1) x,1 + c(1) x),(1 + a(2) x,...

    Text Solution

    |

  8. If abc!=0 then |{:(1+a,1,1),(1,1+b,1),(1,1,1+c):}| is

    Text Solution

    |

  9. If 1 + (1)/(a) + (1)/(b) + (1)/(c) = 0, then Delta = |(1 +a,1,1),(1,...

    Text Solution

    |

  10. If a, b and c are all different from zero and Delta = |(1 +a,1,1),(1...

    Text Solution

    |

  11. In a Delta ABC, a, b, c are sides and A, B, C are angles opposite to t...

    Text Solution

    |

  12. If |(-12,0,lamda),(0,2,-1),(2,1,15)| = -360, then the value of lamda i...

    Text Solution

    |

  13. If a(i), i=1,2,…..,9 are perfect odd squares, then |{:(a(1),a(2),a(3))...

    Text Solution

    |

  14. If maximum and minimum values of the determinant |{:(1+sin^(2)x,cos...

    Text Solution

    |

  15. If [x] denote the greatest integer less than or equal to x then in ord...

    Text Solution

    |

  16. If a, b gt 0 and Delta (x)= |(x,a,a),(b,x,a),(b,b,x)|, then

    Text Solution

    |

  17. If f(x)=ax^2+bx+c,a,b,cepsilonR and the equation f(x)-x=0 has imaginar...

    Text Solution

    |

  18. Let g(x)|f(x+c)f(x+2c)f(x+3c)f(c)f(2c)f(3c)f^(prime)(c)f^(prime)(2c)f^...

    Text Solution

    |

  19. If a^2+b^2+c^2=-2a n df(x)= |1+a^2x(1+b^2)x(1+c^2)x(1+a^2)x1+b^2x(1+c...

    Text Solution

    |

  20. The coefficicent of x in f(x) =|{:(x,1+sinx,cosx),(1, log(1+x),2),(x^2...

    Text Solution

    |