Home
Class 11
MATHS
The roots of the equation |(3x^(2),x^(...

The roots of the equation
`|(3x^(2),x^(2) + x cos theta + cos^(2) theta ,x^(2) + x sin theta + sin^(2) theta),(x^(2) + x cos theta + cos^(2) theta,3 cos^(2) theta,1 + (sin 2 theta)/(2)),(x^(2) + x sin theta + sin^(2) theta,1 + (sin 2 theta)/(2),3 sin^(2) theta)| = 0`

A

`sin theta, cos theta`

B

`sin^(2) theta, cos^(2) theta`

C

`sin theta, cos^(2) theta`

D

`sin^(2) theta, cos theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the determinant: \[ \left| \begin{array}{ccc} 3x^2 & x^2 + x \cos \theta + \cos^2 \theta & x^2 + x \sin \theta + \sin^2 \theta \\ x^2 + x \cos \theta + \cos^2 \theta & 3 \cos^2 \theta & 1 + \frac{\sin 2\theta}{2} \\ x^2 + x \sin \theta + \sin^2 \theta & 1 + \frac{\sin 2\theta}{2} & 3 \sin^2 \theta \end{array} \right| = 0 \] we will follow these steps: ### Step 1: Rewrite the Determinant We notice that the determinant can be expressed as a product of two smaller determinants. We can factor out common terms from the rows and columns. ### Step 2: Factor the Determinant We can rewrite the determinant as: \[ \left| \begin{array}{ccc} x^2 & x & 1 \\ x & \cos \theta & 1 \\ 1 & \sin \theta & 1 \end{array} \right| \cdot \left| \begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 \cos^2 \theta & 1 + \frac{\sin 2\theta}{2} \\ 1 & 1 + \frac{\sin 2\theta}{2} & 3 \sin^2 \theta \end{array} \right| = 0 \] ### Step 3: Set Each Determinant to Zero For the product of the determinants to equal zero, at least one of the determinants must be zero: 1. \(\left| \begin{array}{ccc} x^2 & x & 1 \\ x & \cos \theta & 1 \\ 1 & \sin \theta & 1 \end{array} \right| = 0\) 2. \(\left| \begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 \cos^2 \theta & 1 + \frac{\sin 2\theta}{2} \\ 1 & 1 + \frac{\sin 2\theta}{2} & 3 \sin^2 \theta \end{array} \right| = 0\) ### Step 4: Solve the First Determinant Calculating the first determinant: \[ D_1 = \left| \begin{array}{ccc} x^2 & x & 1 \\ x & \cos \theta & 1 \\ 1 & \sin \theta & 1 \end{array} \right| \] Using the determinant formula, we compute \(D_1\): \[ D_1 = x^2 \left( \cos \theta - \sin \theta \right) - x \left( x \cdot 1 - 1 \cdot \sin \theta \right) + 1 \left( x \cdot \sin \theta - x^2 \cdot 1 \right) \] This simplifies to: \[ D_1 = x^2 (\cos \theta - \sin \theta) - x(x - \sin \theta) + (x \sin \theta - x^2) \] Setting \(D_1 = 0\) gives us the roots. ### Step 5: Solve the Second Determinant Calculating the second determinant: \[ D_2 = \left| \begin{array}{ccc} 3 & 1 & 1 \\ 1 & 3 \cos^2 \theta & 1 + \frac{\sin 2\theta}{2} \\ 1 & 1 + \frac{\sin 2\theta}{2} & 3 \sin^2 \theta \end{array} \right| \] Using the determinant formula, we compute \(D_2\): \[ D_2 = 3 \left( 3 \cos^2 \theta (3 \sin^2 \theta) - (1 + \frac{\sin 2\theta}{2})(1 + \frac{\sin 2\theta}{2}) \right) - 1 \cdot \text{(other terms)} \] Setting \(D_2 = 0\) gives us additional roots. ### Step 6: Collect the Roots From both determinants, we will find the roots \(x = \sin \theta\) and \(x = \cos \theta\). ### Final Answer The roots of the equation are \(x = \sin \theta\) and \(x = \cos \theta\). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If cos theta+cos^(2)theta=1 , the value of sin^(2)theta+sin^(4)theta is

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. |(sin^(2) x,cos^(2) x,1),(cos^(2) x,sin^(2) x,1),(- 10,12,2)| =

    Text Solution

    |

  2. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  3. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  4. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  5. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  6. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  7. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  8. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  9. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  10. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  11. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  12. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  13. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  14. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  15. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  16. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  17. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  18. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  19. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  20. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |