Home
Class 11
MATHS
|(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab...

`|(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')|` is equal to

A

`(ab -a'b') (bc -b'c') (ca - c'a')`

B

`(ab + a'b') (bc + b'c') (ca + c'a')`

C

`(ab' - a'b) (bc' -b'c) (ca' - c'a)`

D

`(ab' + a'b) (bc' + b'c) (ca' + c'a)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the determinant given by \[ D = \begin{vmatrix} bc & bc' + b'c & b'c' \\ ca & ca' + c'a & c'a' \\ ab & ab' + a'b & a'b' \end{vmatrix} \] we will follow a systematic approach. ### Step 1: Factor out common terms from each row We notice that each row has terms that can be factored out. We will factor out \(b'c'\) from the first row, \(c'a'\) from the second row, and \(a'b'\) from the third row. \[ D = b'c'a'b' \begin{vmatrix} \frac{bc}{b'c'} & \frac{bc' + b'c}{b'c'} & \frac{b'c'}{b'c'} \\ \frac{ca}{c'a'} & \frac{ca' + c'a}{c'a'} & \frac{c'a'}{c'a'} \\ \frac{ab}{a'b'} & \frac{ab' + a'b}{a'b'} & \frac{a'b'}{a'b'} \end{vmatrix} \] ### Step 2: Simplify the determinant After factoring out, we can simplify the determinant: \[ D = b'c'a'b' \begin{vmatrix} \frac{bc}{b'c'} & \frac{b}{b'} + \frac{c}{c'} & 1 \\ \frac{ca}{c'a'} & \frac{a}{a'} + \frac{c}{c'} & 1 \\ \frac{ab}{a'b'} & \frac{a}{a'} + \frac{b}{b'} & 1 \end{vmatrix} \] ### Step 3: Perform row operations Now, we can perform row operations to simplify the determinant further. We can subtract the first row from the second and third rows. Row 2: \( R_2 \to R_2 - R_1 \) Row 3: \( R_3 \to R_3 - R_1 \) This gives us: \[ D = b'c'a'b' \begin{vmatrix} \frac{bc}{b'c'} & \frac{b}{b'} + \frac{c}{c'} & 1 \\ 0 & \left(\frac{a}{a'} - \frac{b}{b'}\right) & 0 \\ 0 & \left(\frac{a}{a'} - \frac{c}{c'}\right) & 0 \end{vmatrix} \] ### Step 4: Expand the determinant The determinant can now be expanded. Since the last column consists of zeros, the determinant simplifies to: \[ D = b'c'a'b' \cdot 0 = 0 \] ### Final Result Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The determinat Delta=|(b^2-ab,b-c,bc-ac),(ab-a^2,a-b,b^2-ab),(bc-ac,c-a,ab-a^2)| equals

The value of the determinant |{:(1,bc,a(b+c)),(1,ca,b(a+c)),(1, ab,c(a+b)):}| doesn't depend on

Prove that |{:(b+c, c+a, a+b),(c+a, a+b,b+c),(a+b, b+c, c+a):}| =2(a+b+c)(ab+bc+ca-a^(2)-b^(2)-c^(2)).

show that the determinant |{:(a^(2)+b^(2)+c^(2),,bc+ca+ab,,bc+ca+ab),(bc+ca+ab,,a^(2)+b^(2)+c^(2),,bc+ca+ab),(bc+ca+ab,,bc+ca+ab,,a^(2)+b^(2)+c^(2)):}| is always non- negative.

Prove that identities: |[-bc,b^2+bc,c^2+bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=(a b+b c+a c)^3

|[-bc, b^2+bc, c^2 +bc],[a^2+ac,-ac,c^2+ac],[a^2+ab,b^2+ab,-ab]|=64 . then (ab+bc+ac) is

What is |{:(-a^(2),ab,ac),(ab,-b^(2),bc),(ac,bc,-c^(2)):}| equal to ?

Choose the correct answer from the following : The value of |{:(bc,-c^2,ca),(ab,ac,-a^(2)),(-b^2,bc,ab):}|is:

If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab,bc,ca)|=0, then

If a,b,c are non-zero real number such that |(bc,ca,ab),(ca,ab,bc),(ab,bc,ca)|=0, then

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. The system of linear equations x + y + z = 2 2x + y -z = 3 3x + ...

    Text Solution

    |

  2. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  3. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  4. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  5. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  6. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  7. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  8. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  9. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  10. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  11. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  12. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  13. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  14. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  15. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  16. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  17. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  18. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  19. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  20. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |