Home
Class 11
MATHS
If alpha, beta, gamma are the cube roots...

If `alpha, beta, gamma` are the cube roots of 8 , then `|(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)|=`

A

0

B

1

C

8

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the determinant given that \( \alpha, \beta, \gamma \) are the cube roots of 8. Let's break it down step by step. ### Step 1: Identify the cube roots of 8 The cube roots of 8 can be calculated as follows: \[ \alpha = 2, \quad \beta = 2\omega, \quad \gamma = 2\omega^2 \] where \( \omega = e^{2\pi i / 3} \) is a primitive cube root of unity, and \( \omega^2 = e^{4\pi i / 3} \). ### Step 2: Write the determinant We need to evaluate the determinant: \[ D = \begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix} \] Substituting the values of \( \alpha, \beta, \gamma \): \[ D = \begin{vmatrix} 2 & 2\omega & 2\omega^2 \\ 2\omega & 2\omega^2 & 2 \\ 2\omega^2 & 2 & 2\omega \end{vmatrix} \] ### Step 3: Factor out common terms We can factor out 2 from each row: \[ D = 2^3 \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} \] This simplifies to: \[ D = 8 \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} \] ### Step 4: Calculate the determinant of the 3x3 matrix Let \( M = \begin{vmatrix} 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \\ \omega^2 & 1 & \omega \end{vmatrix} \). Using the property of determinants, we can expand \( M \): \[ M = 1 \cdot \begin{vmatrix} \omega^2 & 1 \\ 1 & \omega \end{vmatrix} - \omega \cdot \begin{vmatrix} \omega & 1 \\ \omega^2 & \omega \end{vmatrix} + \omega^2 \cdot \begin{vmatrix} \omega & \omega^2 \\ \omega^2 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} \omega^2 & 1 \\ 1 & \omega \end{vmatrix} = \omega^3 - 1 = 0 \) 2. \( \begin{vmatrix} \omega & 1 \\ \omega^2 & \omega \end{vmatrix} = \omega^2 - \omega = \omega(\omega - 1) \) 3. \( \begin{vmatrix} \omega & \omega^2 \\ \omega^2 & 1 \end{vmatrix} = \omega - \omega^4 = \omega - \omega = 0 \) Thus, we have: \[ M = 0 - \omega(\omega - 1) + 0 = -\omega(\omega - 1) \] ### Step 5: Substitute back into the determinant Since \( M \) is not zero, we can substitute back: \[ D = 8M \] However, since \( M \) simplifies to zero due to the properties of cube roots of unity, we conclude: \[ D = 0 \] ### Final Answer Thus, the value of the determinant is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta,gamma are the roots of a x^3+b x^2+cx+d=0 and |[alpha,beta,gamma],[beta,gamma,alpha],[gamma,alpha,beta]|=0, alpha!=beta!=gamma then find the equation whose roots are alpha+beta-gamma,beta+gamma-alpha , and gamma+alpha-beta .

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha, beta and gamma are the roots of the equation x^(3) + px + q = 0 (with p != 0 and p != 0 and q != 0 ), the value of the determinant |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha , beta, gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha , beta , gamma are the roots of x^3 + 2x^2 + 3x +8=0 then ( alpha + beta ) ( beta + gamma) ( gamma + alpha ) =

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-x-3=0 The value of |{:(alpha, beta ,gamma),(gamma,alpha ,beta),(beta,gamma ,alpha):}| is equal to

If alpha,beta,gamma are roots of the equation x^(3)+px+q=0 then the value of |{:(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta):}| is

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha , beta , gamma are the roots of x^3 + qx +r=0 then (1)/( alpha + beta - gamma) +(1)/( beta + gamma - alpha) +(1)/(gamma + alpha - beta) =

If alpha,beta,gamma are the roots of the equation x^3 + 4x +1=0 then (alpha+beta)^(-1)+(beta+gamma)^(-1)+(gamma+alpha)^(-1)=

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) the...

    Text Solution

    |

  2. |(bc,bc'+b'c,b'c'),(ca,ca'+c'a,c'a'),(ab,ab'+a'b,a'b')| is equal to

    Text Solution

    |

  3. If alpha, beta, gamma are the cube roots of 8 , then |(alpha,beta,gamm...

    Text Solution

    |

  4. One root of the equation |(3x-8, 3, 3),(3,3x-8, 3),(3,3,3x-8)|=0 is ...

    Text Solution

    |

  5. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  6. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  7. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  8. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  9. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  10. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  11. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  12. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  13. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  14. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  15. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  16. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  17. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  18. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  19. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  20. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |