Home
Class 11
MATHS
The value of |(b +c,a,a),(b,c +a,b),(c,c...

The value of `|(b +c,a,a),(b,c +a,b),(c,c,a +b)|`, is

A

6 abc

B

`a +b +c`

C

4 abc

D

abc

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \[ \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \] we will use the method of cofactor expansion. ### Step 1: Write the determinant We start by writing the determinant explicitly as follows: \[ D = \begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} \] ### Step 2: Expand the determinant We will expand the determinant along the first row: \[ D = (b+c) \begin{vmatrix} c+a & b \\ c & a+b \end{vmatrix} - a \begin{vmatrix} b & b \\ c & a+b \end{vmatrix} + a \begin{vmatrix} b & c+a \\ c & c \end{vmatrix} \] ### Step 3: Calculate the 2x2 determinants Now we calculate each of the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} c+a & b \\ c & a+b \end{vmatrix} = (c+a)(a+b) - bc = ac + ab + a^2 + bc - bc = ac + ab + a^2 \] 2. For the second determinant: \[ \begin{vmatrix} b & b \\ c & a+b \end{vmatrix} = b(a+b) - bc = ab + b^2 - bc \] 3. For the third determinant: \[ \begin{vmatrix} b & c+a \\ c & c \end{vmatrix} = b(c) - c(c+a) = bc - c^2 - ac \] ### Step 4: Substitute back into the expansion Now substituting back into our expression for \(D\): \[ D = (b+c)(ac + ab + a^2) - a(ab + b^2 - bc) + a(bc - c^2 - ac) \] ### Step 5: Simplify the expression Expanding each term: 1. Expanding \((b+c)(ac + ab + a^2)\): \[ = bac + bab + ba^2 + cac + cab + ca^2 = abc + ab^2 + a^2b + ac^2 + abc + a^2c \] 2. Expanding \(-a(ab + b^2 - bc)\): \[ = -a^2b - ab^2 + abc \] 3. Expanding \(a(bc - c^2 - ac)\): \[ = abc - ac^2 - a^2c \] ### Step 6: Combine all terms Now we combine all terms: \[ D = (abc + ab^2 + a^2b + ac^2 + abc + a^2c) - (a^2b + ab^2 - abc) + (abc - ac^2 - a^2c) \] ### Step 7: Collect like terms Combining like terms: - The \(abc\) terms: \(3abc\) - The \(ab^2\) terms: \(ab^2 - ab^2 = 0\) - The \(a^2b\) terms: \(a^2b - a^2b = 0\) - The \(ac^2\) terms: \(ac^2 - ac^2 = 0\) - The \(a^2c\) terms: \(a^2c - a^2c = 0\) Thus, we find that: \[ D = 3abc \] ### Final Answer The value of the determinant is \[ \boxed{3abc} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of |(a-b,b+c,a),(b-a,c+a,b),(c-a,a+b,c)| is

If s=(a+b+c),then value of |{:(s+c,a,b),(c,s+a,b),(c,a,s+b):}| is

The value of |{:(1,1,1),(b+c,c+a,a+b),(b+c-a,c+a-b,a+b-c):}| is

If a,b,c are in G.P. then the value of |(a,b,a+b),(b,c,b+c),(a+b,b+c,0)|= (A) 1 (B) -1 (C) a+b+c (D) 0

If a ,b ,c are sides of a scalene triangle, then value of |[a, b, c] ,[b, c, a] ,[c, a, b]| is positive (b) negative non-positive (d) non-negative

The value of |{:(1+a,b,c),(a,1+b,c),(a,b,1+c):}| is

The value of the determinant |(b +c,a -b,a),(c +a,b -c,b),(a +b,c -a,c)| , is

If a, b and c represent the lengths of sides of a triangle then the possible integeral value of (a)/(b+c) + (b)/(c+a) + (c)/(a +b) is _____

Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)| is (A) (a-b)(b-c)(c-a) (B) (a^2-b^2)(b^2-c^2)(c^2-a^2) (C) (a-b+c)(b-c+a)(c+a-b) (D) none of these

If |(a-b-c, 2a, 2a),(2b, b-a-c, 2b),(2c, 2c, c-a-b)|=(a+b+c)(x+a+b+c)^2 then the value of x is equal to (A) -2(a+b+c) (B) a+b+c (C) -(a+b+c) (D) 2(a+b+c)

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If a,b and c are non- zero real number then prove that |{:(b^(2...

    Text Solution

    |

  2. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  3. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  4. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  5. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  6. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  7. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  8. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  9. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  10. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  11. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  12. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  13. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  14. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  15. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  16. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |

  17. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  18. If the system of equations bx + ay = c, cx + az = b, cy + bz = a h...

    Text Solution

    |

  19. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |

  20. If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively...

    Text Solution

    |