Home
Class 11
MATHS
If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4...

If `a!=6,b,c` satisfy`|[a,2b,2c],[3,b,c],[4,a,b]|=0` ,then abc =

A

`a +b +c`

B

0

C

`b^(3)`

D

`ab + bc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant problem given by the equation \[ \begin{vmatrix} a & 2b & 2c \\ 3 & b & c \\ 4 & a & b \end{vmatrix} = 0 \] we will follow these steps: ### Step 1: Write the determinant The determinant can be expressed as: \[ D = a \begin{vmatrix} b & c \\ a & b \end{vmatrix} - 2b \begin{vmatrix} 3 & c \\ 4 & b \end{vmatrix} + 2c \begin{vmatrix} 3 & b \\ 4 & a \end{vmatrix} \] ### Step 2: Calculate the 2x2 determinants Calculating the 2x2 determinants: 1. \(\begin{vmatrix} b & c \\ a & b \end{vmatrix} = b^2 - ac\) 2. \(\begin{vmatrix} 3 & c \\ 4 & b \end{vmatrix} = 3b - 4c\) 3. \(\begin{vmatrix} 3 & b \\ 4 & a \end{vmatrix} = 3a - 4b\) ### Step 3: Substitute back into the determinant Now substituting these values back into the expression for \(D\): \[ D = a(b^2 - ac) - 2b(3b - 4c) + 2c(3a - 4b) \] ### Step 4: Expand the determinant Expanding this, we have: \[ D = ab^2 - a^2c - 6b^2 + 8bc + 6ac - 8bc \] This simplifies to: \[ D = ab^2 - a^2c - 6b^2 + 6ac = 0 \] ### Step 5: Factor the equation We can factor this equation: \[ D = (a - 6)(b^2 - ac) = 0 \] ### Step 6: Analyze the factors From the factorization, we have two cases: 1. \(a - 6 = 0\) which gives \(a = 6\), but we know \(a \neq 6\). 2. \(b^2 - ac = 0\) which gives \(b^2 = ac\). ### Step 7: Find the value of \(abc\) From \(b^2 = ac\), we can express \(abc\): \[ abc = b \cdot b^2 = b \cdot ac = b^3 \] ### Conclusion Thus, the value of \(abc\) is \(b^3\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

Let A= [[a,b,c],[b,c,a],[c,a,b]] is an orthogonal matrix and abc = lambda (lt0). The value a^(2) b^(2) + b^(2) c^(2) + c^(2) a^(2) , is

Using properties of determinants, prove that |[a, a+b, a+b+c],[2a,3a+2b,4a+3b+2c],[3a,6a+3b,10a+6b+3c]|=a^3

If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]| =0, show that abc(ab+bc+ac) = a+b+c

If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]| =0, show that abc(ab+bc+ac) = a+b+c

If a,b,c are all distinct and |[a,a^3,a^4-1],[b,b^3,b^4-1],[c,c^3,c^4-1]| =0, show that abc(ab+bc+ac) = a+b+c

Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)

Prove that: |[-2a, a+b,a+c],[ b+a,-2b,b+c],[c+a, c+b,-2c]|=4(a+b)(b+c)(c+a)

Prove: |[a-b-c,2a,2a],[2b,b-c-a,2b],[2c,2c,c-a-b]|=(a+b+c)^3

If a^(2)+b^(2)+c^(2)-2a-4b-6c= -14 then a+b+c =

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  2. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  3. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  4. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  5. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  6. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  7. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  8. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  9. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  10. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  11. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  12. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  13. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  14. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  15. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |

  16. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  17. If the system of equations bx + ay = c, cx + az = b, cy + bz = a h...

    Text Solution

    |

  18. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |

  19. If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively...

    Text Solution

    |

  20. If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)|...

    Text Solution

    |