Home
Class 11
MATHS
The value of Delta = |(1^(2),2^(2),3^(2)...

The value of `Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4^(2),5^(2))|`, is

A

8

B

`-8'

C

400

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the determinant \( \Delta = \begin{vmatrix} 1^2 & 2^2 & 3^2 \\ 2^2 & 3^2 & 4^2 \\ 3^2 & 4^2 & 5^2 \end{vmatrix} \), we will follow these steps: ### Step 1: Write the Determinant First, we will write the determinant with the actual values: \[ \Delta = \begin{vmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 9 & 16 & 25 \end{vmatrix} \] ### Step 2: Apply Row Operations We can simplify the determinant by performing row operations. We will subtract the second row from the third row: \[ R_3 \leftarrow R_3 - R_2 \] This gives us: \[ \Delta = \begin{vmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 5 & 7 & 9 \end{vmatrix} \] ### Step 3: Apply Another Row Operation Next, we will subtract the first row from the third row: \[ R_3 \leftarrow R_3 - R_1 \] This results in: \[ \Delta = \begin{vmatrix} 1 & 4 & 9 \\ 4 & 9 & 16 \\ 4 & 3 & 0 \end{vmatrix} \] ### Step 4: Expand the Determinant Now we will expand the determinant along the first row: \[ \Delta = 1 \cdot \begin{vmatrix} 9 & 16 \\ 3 & 0 \end{vmatrix} - 4 \cdot \begin{vmatrix} 4 & 16 \\ 4 & 0 \end{vmatrix} + 9 \cdot \begin{vmatrix} 4 & 9 \\ 4 & 3 \end{vmatrix} \] ### Step 5: Calculate the 2x2 Determinants Now we calculate the 2x2 determinants: 1. \( \begin{vmatrix} 9 & 16 \\ 3 & 0 \end{vmatrix} = (9 \cdot 0) - (16 \cdot 3) = -48 \) 2. \( \begin{vmatrix} 4 & 16 \\ 4 & 0 \end{vmatrix} = (4 \cdot 0) - (16 \cdot 4) = -64 \) 3. \( \begin{vmatrix} 4 & 9 \\ 4 & 3 \end{vmatrix} = (4 \cdot 3) - (9 \cdot 4) = 12 - 36 = -24 \) ### Step 6: Substitute Back into the Expansion Substituting these values back into the expansion gives: \[ \Delta = 1 \cdot (-48) - 4 \cdot (-64) + 9 \cdot (-24) \] \[ = -48 + 256 - 216 \] ### Step 7: Simplify the Expression Now we simplify: \[ \Delta = -48 + 256 - 216 = -48 + 40 = -8 \] ### Final Answer Thus, the value of \( \Delta \) is: \[ \Delta = -8 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

The value of |{:(2^(2),2^(3),2^(4)),(2^(3),2^(4),2^(5)),(2^(4),2^(5),2^(6)):}| is

The value of the determinant [(1^2, 2^2, 3^2, 4^2) ,(2^2, 3^2 ,4^2,5^2) ,(3^2, 4^2,5^2 ,6^2) ,(4^2, 5^2, 6^2, 7^2)] is equal to 1 b. 0 c. 2 d. 3

The value of lim_(nrarroo)(1^(2)-2^(2)+3^(2)-4^(2)+5^(2)….+(2n+1)^(2))/(n^(2)) is equal to

If x,y,zepsilonR then the value of |((2x^(x)+2^(-x))^(2),(2^(x)-2^(-x))^(2),1),((3x^(x)+3^(-x))^(2),(3^(x)-3^(-x))^(2),1),((4^(x)+4^(-x))^(2),(4^(x)-4^(-x))^(2),1)| is

Evaluate the following: |[1^2, 2^2, 3^2],[2^2, 3^2, 4^2],[3^2, 4^2, 5^2]|

The value of lim_(n to oo) ((1^(2)+2^(2)+………+n^(2))(1^(3)+2^(3)+……….+n^(3))(1^(4)+2^(4)+…………n^(4)))/((1^(5)+2^(5)+…………+n^(5))^(2))) is equal to

The sum of the series 1+(1^2+2^2)/(2!)+(1^(2)+2^(2)+3^(2))/(3!)+(1^(2)+2^(2)+3^(2)+4^2)/(4!) +.. Is

The sum of the series ((1)^(2).2)/(1!)+(2^(2).3)/(2!)+(3^(2).4)/(3!)+(4^(2).5)/(4!) +..is

Find the rank of the matrix A = [[1^2,2^2,3^2,4^2],[2^2,3^2,4^2,5^2],[3^2,4^2,5^2,6^2],[4^2,5^2,6^2,7^2]]

Find the values of :- (1) (8)^(1//3) (2) (64)^(1//2) (3) 4^(5//2) (4) (36)^(3//2) (5) (27)^(2//3)

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  2. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  3. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  4. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  5. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  6. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  7. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  8. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  9. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  10. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  11. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  12. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  13. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  14. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  15. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |

  16. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  17. If the system of equations bx + ay = c, cx + az = b, cy + bz = a h...

    Text Solution

    |

  18. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |

  19. If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively...

    Text Solution

    |

  20. If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)|...

    Text Solution

    |