Home
Class 11
MATHS
If A, B and C are the angles of a triang...

If A, B and C are the angles of a triangle and
`|(1,1,1),(1 + sin A,1 + sin B,1 + sin C),(sin A + sin^(2) A,sin B + sin^(2)B,sin C + sin^(2) C)|= 0`, then the triangle ABC is

A

equilateral

B

isosceles

C

any triangle

D

right angled

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given determinant problem, we need to analyze the determinant and simplify it step by step. The determinant is given as: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ 1 + \sin A & 1 + \sin B & 1 + \sin C \\ \sin^2 A + \sin A & \sin^2 B + \sin B & \sin^2 C + \sin C \end{vmatrix} \] We are given that \(D = 0\). ### Step 1: Simplify the Determinant We will perform row operations to simplify the determinant. First, we subtract the first row from the second row: \[ R_2 \rightarrow R_2 - R_1 \] This gives us: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin^2 A + \sin A & \sin^2 B + \sin B & \sin^2 C + \sin C \end{vmatrix} \] ### Step 2: Further Simplify Next, we will perform another row operation by subtracting the second row from the third row: \[ R_3 \rightarrow R_3 - R_2 \] This results in: \[ D = \begin{vmatrix} 1 & 1 & 1 \\ \sin A & \sin B & \sin C \\ \sin^2 A & \sin^2 B & \sin^2 C \end{vmatrix} \] ### Step 3: Column Operations Now, we will perform column operations. We will subtract the second column from the first column and the third column from the second column: \[ C_1 \rightarrow C_1 - C_2, \quad C_2 \rightarrow C_2 - C_3 \] This gives us: \[ D = \begin{vmatrix} 0 & 1 - \sin B & 1 - \sin C \\ \sin A - \sin B & \sin B - \sin C & \sin C \\ \sin^2 A - \sin^2 B & \sin^2 B - \sin^2 C & \sin^2 C \end{vmatrix} \] ### Step 4: Expand the Determinant Now we will expand the determinant along the first row: \[ D = 1 \cdot \begin{vmatrix} \sin A - \sin B & \sin B - \sin C \\ \sin^2 A - \sin^2 B & \sin^2 B - \sin^2 C \end{vmatrix} \] ### Step 5: Factor the Determinant Notice that \(\sin^2 A - \sin^2 B = (\sin A - \sin B)(\sin A + \sin B)\) and \(\sin^2 B - \sin^2 C = (\sin B - \sin C)(\sin B + \sin C)\). Thus, we can factor out: \[ D = (\sin A - \sin B)(\sin B - \sin C)(\sin A + \sin B + \sin C) = 0 \] ### Step 6: Analyze the Factors For the determinant to be zero, at least one of the factors must be zero: 1. \(\sin A - \sin B = 0 \Rightarrow A = B\) 2. \(\sin B - \sin C = 0 \Rightarrow B = C\) 3. \(\sin C - \sin A = 0 \Rightarrow C = A\) If any two angles are equal, the triangle is isosceles. ### Conclusion Since we have shown that at least two angles of triangle ABC are equal, we conclude that triangle ABC is an **isosceles triangle**.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If A,B and C are the angles of a triangle and |{:(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^(2)A,sinB+sin^(2)B,sinCsin^(2)C):}| =0 then Delta ABC must be .

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In a triangleABC , if |(1,1,1),(1+sinA,1+sinB,1+sinC),(sinA+sin^2A,sinB+sin^2B,sinC+sin^2C)|=0 , then prove that triangleABC is an isosceles triangle.

If A,B and C are the angle of a triangle show that |{:(sin2A,sinC,sinB),(sinC,sin2B,sinA),(sinB,sinA,sin2C):}|=0.

In a triangleABC , if |[1,1,1][1+sinA,1+sinB,1+sinC],[sinA+sin^2A, sinB+sin^2B, sinC+sin^2C]|=0 , then prove that triangleABC is an isosceles triangle.

lf in DeltaABC,b^(2)sin 2C + c^(2) sin 2B = 2bc,then the triangle is

If A, B, C are the angles of a triangle, then the determinant Delta = |(sin 2 A,sin C,sin B),(sin C,sin 2B,sin A),(sin B,sin A,sin 2 C)| is equal to

If A, B, C are the angles of a triangle such that sin^(2)A+sin^(2)B=sin^(2)C , then

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  2. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  3. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  4. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  5. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  6. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  7. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  8. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  9. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  10. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  11. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  12. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  13. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  14. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  15. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |

  16. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  17. If the system of equations bx + ay = c, cx + az = b, cy + bz = a h...

    Text Solution

    |

  18. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |

  19. If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively...

    Text Solution

    |

  20. If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)|...

    Text Solution

    |