Home
Class 11
MATHS
If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x...

If `|(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0),(x,0,5)|=0,` then the value of x equals `(x in R):`

A

0

B

5

C

`-5`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that the determinants of three matrices are equal to zero. Let's denote the matrices as follows: 1. \( A = \begin{pmatrix} x & 2 & 3 \\ 2 & 3 & x \\ 3 & x & 2 \end{pmatrix} \) 2. \( B = \begin{pmatrix} 1 & x & 4 \\ x & 4 & 1 \\ 4 & 1 & x \end{pmatrix} \) 3. \( C = \begin{pmatrix} 0 & 5 & x \\ 5 & x & 0 \\ x & 0 & 5 \end{pmatrix} \) We need to compute the determinants of these matrices and set them equal to zero. ### Step 1: Calculate the determinant of matrix A Using the formula for the determinant of a 3x3 matrix, we have: \[ \text{det}(A) = x \begin{vmatrix} 3 & x \\ x & 2 \end{vmatrix} - 2 \begin{vmatrix} 2 & x \\ 3 & 2 \end{vmatrix} + 3 \begin{vmatrix} 2 & 3 \\ 3 & x \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 3 & x \\ x & 2 \end{vmatrix} = 3 \cdot 2 - x \cdot x = 6 - x^2 \) 2. \( \begin{vmatrix} 2 & x \\ 3 & 2 \end{vmatrix} = 2 \cdot 2 - 3 \cdot x = 4 - 3x \) 3. \( \begin{vmatrix} 2 & 3 \\ 3 & x \end{vmatrix} = 2 \cdot x - 3 \cdot 3 = 2x - 9 \) Substituting these back into the determinant: \[ \text{det}(A) = x(6 - x^2) - 2(4 - 3x) + 3(2x - 9) \] Expanding this: \[ = 6x - x^3 - 8 + 6x + 6x - 27 \] \[ = -x^3 + 18x - 35 \] ### Step 2: Calculate the determinant of matrix B Using the same method: \[ \text{det}(B) = 1 \begin{vmatrix} 4 & 1 \\ 1 & x \end{vmatrix} - x \begin{vmatrix} x & 4 \\ 4 & 1 \end{vmatrix} + 4 \begin{vmatrix} x & 4 \\ 4 & 1 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 4 & 1 \\ 1 & x \end{vmatrix} = 4x - 1 \) 2. \( \begin{vmatrix} x & 4 \\ 4 & 1 \end{vmatrix} = x \cdot 1 - 4 \cdot 4 = x - 16 \) Substituting these back into the determinant: \[ \text{det}(B) = 1(4x - 1) - x(x - 16) + 4(x - 16) \] Expanding this: \[ = 4x - 1 - (x^2 - 16x) + 4x - 64 \] \[ = -x^2 + 12x - 65 \] ### Step 3: Calculate the determinant of matrix C Using the same method: \[ \text{det}(C) = 0 \begin{vmatrix} x & 0 \\ 0 & 5 \end{vmatrix} - 5 \begin{vmatrix} 5 & x \\ x & 0 \end{vmatrix} + x \begin{vmatrix} 5 & 5 \\ x & 0 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 5 & x \\ x & 0 \end{vmatrix} = 0 - 5x = -5x \) 2. \( \begin{vmatrix} 5 & 5 \\ x & 0 \end{vmatrix} = 0 - 5x = -5x \) Substituting these back into the determinant: \[ \text{det}(C) = -5(-5x) + x(-5x) \] \[ = 25 - 5x^2 \] ### Step 4: Set the determinants equal to zero Now we have: 1. \( -x^3 + 18x - 35 = 0 \) 2. \( -x^2 + 12x - 65 = 0 \) 3. \( -5x^2 + 25 = 0 \) ### Step 5: Solve the equations 1. For \( -x^3 + 18x - 35 = 0 \) 2. For \( -x^2 + 12x - 65 = 0 \) 3. For \( -5x^2 + 25 = 0 \) From the third equation: \[ -5x^2 + 25 = 0 \implies 5x^2 = 25 \implies x^2 = 5 \implies x = \pm \sqrt{5} \] From the second equation: \[ -x^2 + 12x - 65 = 0 \implies x^2 - 12x + 65 = 0 \] Using the quadratic formula: \[ x = \frac{12 \pm \sqrt{144 - 260}}{2} = \frac{12 \pm \sqrt{-116}}{2} \] This gives complex solutions, which we discard. From the first equation, we can substitute \( x = -5 \) and check if it satisfies all three equations. ### Conclusion The value of \( x \) that satisfies all three determinants being equal to zero is: \[ \boxed{-5} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

If f(x) = (x - 1)(x - 2)(x - 3)(x - 4)(x - 5) , then the value of f' (5) is equal to

If |[x,3, 6],[ 3, 6,x],[6,x,3]|=|[2,x,7],[x,7, 2],[ 7, 2,x]|=|[4, 5,x],[5,x,4],[x,4, 5]|=0, then x is equal to a. 0 b. -9 c. 3 d. none of these

If 2|(3, 4),( 5,x)|+|(1,y),(0, 1)|=|(7, 0),(10, 5)| , find x-y .

Solve for x:|{:(x,x),(8,x):}| = |{:(7,-2,1),(0,3,-1),(5,-4,2):}| .

Median of (x)/(5), x, (x)/(4), (x)/(2), (x)/(3) is 8. If x gt 0 then value of x is

If X[(-7,2),(0,-5)]=[(2,-3),(5,4)] ,then X

[{:(,x^(2)+x,-1),(,3,2):}]+[{:(,0,-1),(,-x+1,x):}]=[{:(,0,-2),(,5,1):}] then x is equalto-

Find all values of x that make |(2,-1,4),(3,0,5),(4,1,6)|=|(x,4),(5,x)|

(x^4+x^2+1)/(x^2-4x-5)<0 Find Range of x

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  2. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  3. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  4. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  5. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  6. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  7. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  8. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  9. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  10. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  11. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  12. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  13. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  14. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  15. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |

  16. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  17. If the system of equations bx + ay = c, cx + az = b, cy + bz = a h...

    Text Solution

    |

  18. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |

  19. If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively...

    Text Solution

    |

  20. If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)|...

    Text Solution

    |