Home
Class 11
MATHS
If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a...

If `|(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),2a +d)| = 0`, then

A

`d = 0`

B

`a +d = 0`

C

`d = 0 ro a +d = 0`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation given by \[ D = \begin{vmatrix} a & a + d & a + 2d \\ a^2 & (a + d)^2 & (a + 2d)^2 \\ 2a + 3d & 2(a + d) & 2a + d \end{vmatrix} = 0, \] we will follow these steps: ### Step 1: Write down the determinant The determinant is given as: \[ D = \begin{vmatrix} a & a + d & a + 2d \\ a^2 & (a + d)^2 & (a + 2d)^2 \\ 2a + 3d & 2(a + d) & 2a + d \end{vmatrix}. \] ### Step 2: Perform row operations We will perform the row operation \( R_3 \to R_3 - 2R_1 \): \[ R_3 = (2a + 3d - 2a, 2(a + d) - 2(a + d), 2a + d - 2(a + 2d)). \] This simplifies to: \[ R_3 = (3d, 0, -3d). \] So the determinant now looks like: \[ D = \begin{vmatrix} a & a + d & a + 2d \\ a^2 & (a + d)^2 & (a + 2d)^2 \\ 3d & 0 & -3d \end{vmatrix}. \] ### Step 3: Factor out common terms Next, we can factor out \( 3d \) from the third row: \[ D = 3d \begin{vmatrix} a & a + d & a + 2d \\ a^2 & (a + d)^2 & (a + 2d)^2 \\ 1 & 0 & -1 \end{vmatrix}. \] ### Step 4: Perform another row operation Now, we will perform the operation \( R_2 \to R_2 - aR_1 \): \[ R_2 = (a^2 - a^2, (a + d)^2 - a(a + d), (a + 2d)^2 - a(a + 2d)). \] This simplifies to: \[ R_2 = (0, d^2 + 2ad, 4d^2 + 4ad). \] So the determinant becomes: \[ D = 3d \begin{vmatrix} a & a + d & a + 2d \\ 0 & d^2 + 2ad & 4d^2 + 4ad \\ 1 & 0 & -1 \end{vmatrix}. \] ### Step 5: Expand the determinant Now we can expand the determinant along the first column: \[ D = 3d \left( a \begin{vmatrix} d^2 + 2ad & 4d^2 + 4ad \\ 0 & -1 \end{vmatrix} - 0 + 1 \begin{vmatrix} a + d & a + 2d \\ d^2 + 2ad & 4d^2 + 4ad \end{vmatrix} \right). \] Calculating the first determinant gives: \[ D = 3d \left( a(-1)(d^2 + 2ad) - 0 + 1 \begin{vmatrix} a + d & a + 2d \\ d^2 + 2ad & 4d^2 + 4ad \end{vmatrix} \right). \] ### Step 6: Solve for zero Setting \( D = 0 \) gives us: \[ 3d \left( -a(d^2 + 2ad) + \text{some expression} \right) = 0. \] This implies either \( d = 0 \) or the expression in parentheses equals zero. ### Step 7: Analyze the conditions From the determinant, we can conclude: 1. \( d = 0 \) 2. The expression yields \( a + d = 0 \). Thus, the final answer is: \[ d = 0 \quad \text{or} \quad a + d = 0. \] ### Final Answer The correct options are \( d = 0 \) or \( a + d = 0 \).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

let a > 0 , d > 0 find the value of the determinant |[1/a,1/(a(a + d)),1/( (a + d) (a +2d))],[1/(a+ d),1/( (a+ d) (a + 2d)), 1/((a+2d) (a + 3d))],[1/(a +2d), 1/((a + 2d) (a +3d)), 1/((a+3d) (a + 4d))]|

(2d^(2)e^(-1))^(3)xx(d^(3)/e)^(-2)=

The distance between two points P and Q is d and the length of their projections of PQ on the co-ordinate planes are d _(1),d_(2), d_(3). Then d _(1) ^(2) + d_(2)^(2) + d_(3) ^(2) = kd ^(2), where k is "_____."

The distance between two points P and Q is d and the length of their projections of PQ on the co-ordinate planes are d _(1),d_(2), d_(3). Then d _(1) ^(2) + d_(2)^(2) + d_(3) ^(2) = kd ^(2), where k is "_____."

If a ,b,c , d are in G.P. prove that (a-d)^(2) = (b -c)^(2)+(c-a)^(2) + (d-b)^(2)

IF ax^3+bx^2+cx+d = |(x^2,(x-1)^2, (x-2)^2) ,((x-1)^2, (x-2)^2, (x-3)^2), ((x-2)^2, (x-3)^2, (x-4)^2)| , then d= (A) 1 (B) -8 (C) 0 (D) none of these

If (d^(2)x)/(dy^(2)) ((dy)/(dx))^(3) + (d^(2) y)/(dx^(2)) = k , then k is equal to

If 4 + (4 +d)/( 5) + (4 + 2d)/(5 ^(2)) ……….=1, then find d.

During the transformation of ._(c )X^(a) to ._(d)Y^(b) the number of beta -particles emitted are a. d + ((a - b)/(2)) - c b. (a - b)/(c ) c. d + ((a - b)/(2)) + c d. 2c - d + a = b

If y^2=P(x) , then 2d/dx(y^3(d^2y/dx^2))

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  2. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  3. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  4. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  5. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  6. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  7. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  8. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  9. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  10. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  11. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  12. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  13. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  14. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  15. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |

  16. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  17. If the system of equations bx + ay = c, cx + az = b, cy + bz = a h...

    Text Solution

    |

  18. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |

  19. If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively...

    Text Solution

    |

  20. If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)|...

    Text Solution

    |