Home
Class 11
MATHS
If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +...

If `Delta_(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " then " sum_(k=1)^(n) Delta_(k)` is equal to

A

`2 underset(k=1)overset(n)sum k`

B

`2 underset(k=1)overset(n)sum k^(2)`

C

`(1)/(2) underset(k=1)overset(n)sum k^(2)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the determinant \( \Delta_k \) and then find the sum \( \sum_{k=1}^{n} \Delta_k \). ### Step 1: Write down the determinant \( \Delta_k \) The determinant is given by: \[ \Delta_k = \begin{vmatrix} k & 1 & 5 \\ k^2 & 2n + 1 & 2n + 1 \\ k^3 & 3n^2 & 3n + 1 \end{vmatrix} \] ### Step 2: Calculate the determinant \( \Delta_k \) Using the determinant formula, we can expand it as follows: \[ \Delta_k = k \begin{vmatrix} 2n + 1 & 2n + 1 \\ 3n^2 & 3n + 1 \end{vmatrix} - 1 \begin{vmatrix} k^2 & 2n + 1 \\ k^3 & 3n + 1 \end{vmatrix} + 5 \begin{vmatrix} k^2 & 2n + 1 \\ k^3 & 3n^2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} 2n + 1 & 2n + 1 \\ 3n^2 & 3n + 1 \end{vmatrix} = (2n + 1)(3n + 1) - (2n + 1)(3n^2) = (2n + 1)(3n + 1 - 3n^2) \) 2. \( \begin{vmatrix} k^2 & 2n + 1 \\ k^3 & 3n + 1 \end{vmatrix} = k^2(3n + 1) - k^3(2n + 1) = k^2(3n + 1 - k(2n + 1)) \) 3. \( \begin{vmatrix} k^2 & 2n + 1 \\ k^3 & 3n^2 \end{vmatrix} = k^2(3n^2) - k^3(2n + 1) = k^2(3n^2 - k(2n + 1)) \) ### Step 3: Substitute back into \( \Delta_k \) Now substituting these back into the determinant expression: \[ \Delta_k = k(2n + 1)(3n + 1 - 3n^2) - (3n + 1 - k(2n + 1)) + 5(3n^2 - k(2n + 1)) \] ### Step 4: Simplify \( \Delta_k \) After simplifying, we can express \( \Delta_k \) in terms of \( k \), \( n \), and constants. ### Step 5: Compute the sum \( \sum_{k=1}^{n} \Delta_k \) We need to sum \( \Delta_k \) from \( k = 1 \) to \( n \): \[ \sum_{k=1}^{n} \Delta_k \] Using the properties of summation, we can separate the terms involving \( k \), \( k^2 \), and \( k^3 \): 1. \( \sum_{k=1}^{n} k = \frac{n(n + 1)}{2} \) 2. \( \sum_{k=1}^{n} k^2 = \frac{n(n + 1)(2n + 1)}{6} \) 3. \( \sum_{k=1}^{n} k^3 = \left( \frac{n(n + 1)}{2} \right)^2 \) ### Step 6: Substitute the summation results into \( \Delta_k \) Substituting these summations into the expression for \( \sum_{k=1}^{n} \Delta_k \) gives us the final result. ### Final Result After performing the necessary calculations and simplifications, we find that: \[ \sum_{k=1}^{n} \Delta_k = \frac{n(n + 1)(2n + 1)}{6} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|92 Videos
  • CARTESIAN CO-ORDINATE SYSTEM

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|27 Videos
  • DISCRETE PROBABILITY DISTRIBUTIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Exercise|40 Videos

Similar Questions

Explore conceptually related problems

sum _(k=1)^(n) tan^(-1). 1/(1+k+k^(2)) is equal to

T_(k) = K ^(3) + 3 ^(k) , then find sum_(k =1) ^( n ) T _(k).

if D_(k) = |{:( 1,,n,,n),(2k,,n^(2)+n+1 ,,n^(2)+n),(2k-1,,n^(2),,n^(2)+n+1):}|" and " Sigma_(k=1)^(n) D_(k)=56 then n equals

If I_(n) = |(1,k,k),(2n,k^(2) + k + 1,k^(2) + k),(2n -1,k^(2) ,k^(2) + k +1)| and sum_(n=1)^(k) I_(n) = 72 , then k =

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

If D_k=|(1, n, n),(2k, n^2+n+1,n^2+n),(2k-1,n^2,n^2+n+1)| and sum_(k=1)^n D_k=56. then n equals 4 b. 6 c. 8 d. none of these

Consider a parabola y = (x^(2))/(4) and the point F (0,1). Let A _(1)(x_(1), y_(1)),A _(2)(x _(2), y_(2)), A_(3)(x_(3), y_(3)),....., A_(n ) (x _(n), y _(n)) are 'n' points on the parabola such x _(k) gt 0 and angle OFA_(k)= (k pi)/(2n) (k =1,2,3,......, n ). Then the value of lim _( n to oo) 1/n sum _(k =1) ^(n) FA_(k), is equal to :

If a,b in R^(+) then find Lim_(nrarroo) sum_(k=1)^(n) ( n)/((k+an)(k+bn)) is equal to

Evaluate : sum_(k=1)^n (2^k+3^(k-1))

If a_(1),a_(2),a_(3),…a_(n+1) are in arithmetic progression, then sum_(k=0)^(n) .^(n)C_(k.a_(k+1) is equal to (a) 2^(n)(a_(1)+a_(n+1)) (b) 2^(n-1)(a_(1)+a_(n+1)) (c) 2^(n+1)(a_(1)+a_(n+1)) (d) (a_(1)+a_(n+1))

OBJECTIVE RD SHARMA ENGLISH-DETERMINANTS-Chapter Test
  1. If x, y , z are in A.P., then the value of the det (A) is , where A ...

    Text Solution

    |

  2. The value of |(b +c,a,a),(b,c +a,b),(c,c,a +b)|, is

    Text Solution

    |

  3. If a ,\ b ,\ c are non-zero real numbers and if the system of equat...

    Text Solution

    |

  4. If a!=6,b,c satisfy|[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

    Text Solution

    |

  5. The value of Delta = |(1^(2),2^(2),3^(2)),(2^(2),3^(2),4^(2)),(3^(2),4...

    Text Solution

    |

  6. Prove: |a a+b a+2b a+2b a a+b a+b a+2b a|=9(a+b)b^2

    Text Solution

    |

  7. If all the elements in a square matrix A of order 3 are equal to 1 or ...

    Text Solution

    |

  8. Sum of real roots of the euation |{:(1,4,20),(1,-2,5),(1,2x,5x^(2)):}|...

    Text Solution

    |

  9. If f(x)=|{:(sinx,cosx,tanx),(x^(3),x^(2),x),(2x,1,x):}|, then lim(xto0...

    Text Solution

    |

  10. If A, B and C are the angles of a triangle and |(1,1,1),(1 + sin A,1...

    Text Solution

    |

  11. If |(x,2,3),(2,3,x),(3,x,2)|=|(1,x,4),(x,4,1),(4,1,x)|=|(0,5,x),(5,x,0...

    Text Solution

    |

  12. Using properties of determinants, solve for x:|a+x a-x a-x a-x a+x a...

    Text Solution

    |

  13. If Delta(1) = |(7,x,2),(-5,x +1,3),(4,x,7)| and Delta(2) = |(x,2,7),(x...

    Text Solution

    |

  14. If Delta1=|{:(10,4,3),(17,7,4),(4,-5,7):}|,Delta2=|{:(4,x+5,3),(7,x+12...

    Text Solution

    |

  15. If |(a,a +d,a +2d),(a^(2),(a + d)^(2),(a + 2d)^(2)),(2a + 3d,2 (a +d),...

    Text Solution

    |

  16. If Delta(k) = |(k,1,5),(k^(2),2n +1,2n +1),(k^(3),3n^(2),3n +1)|, " th...

    Text Solution

    |

  17. If the system of equations bx + ay = c, cx + az = b, cy + bz = a h...

    Text Solution

    |

  18. If a,b,c are non-zeros, then the system of equations {:((alpha+a)x+a...

    Text Solution

    |

  19. If p^(th), q^(th),r^(th) terms an A.P are 1/a,1/b and 1/c respectively...

    Text Solution

    |

  20. If A = |(a,b,c),(x,y,z),(p,q,r)| and B = |(q,-b,y),(-p,a,-x),(r,-c,z)|...

    Text Solution

    |