Home
Class 11
MATHS
If ""^(12)P(r)=""^(11)P(6)+6""^(11)P(5) ...

If `""^(12)P_(r)=""^(11)P_(6)+6""^(11)P_(5)` then r is equal to

A

6

B

5

C

7

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 12P_r = 11P_6 + 6 \cdot 11P_5 \), we will follow these steps: ### Step 1: Write down the given equation We start with the equation: \[ 12P_r = 11P_6 + 6 \cdot 11P_5 \] ### Step 2: Use the formula for permutations Recall the formula for permutations: \[ nP_r = \frac{n!}{(n-r)!} \] Using this, we can express \( 11P_6 \) and \( 11P_5 \): \[ 11P_6 = \frac{11!}{(11-6)!} = \frac{11!}{5!} \] \[ 11P_5 = \frac{11!}{(11-5)!} = \frac{11!}{6!} \] ### Step 3: Substitute the values into the equation Substituting these values back into the equation gives: \[ 12P_r = \frac{11!}{5!} + 6 \cdot \frac{11!}{6!} \] ### Step 4: Simplify the right-hand side Now, we simplify the right-hand side: \[ 6 \cdot \frac{11!}{6!} = \frac{6 \cdot 11!}{6!} = \frac{11!}{5!} \] Thus, we can write: \[ 12P_r = \frac{11!}{5!} + \frac{11!}{5!} = 2 \cdot \frac{11!}{5!} \] ### Step 5: Express \( 12P_r \) using the permutation formula Now, we can express \( 12P_r \) using the permutation formula: \[ 12P_r = \frac{12!}{(12-r)!} \] ### Step 6: Set the two expressions equal to each other We now have: \[ \frac{12!}{(12-r)!} = 2 \cdot \frac{11!}{5!} \] ### Step 7: Simplify the left-hand side We can express \( 12! \) as \( 12 \cdot 11! \): \[ \frac{12 \cdot 11!}{(12-r)!} = 2 \cdot \frac{11!}{5!} \] Cancelling \( 11! \) from both sides gives: \[ \frac{12}{(12-r)!} = \frac{2}{5!} \] ### Step 8: Cross-multiply to solve for \( r \) Cross-multiplying yields: \[ 12 \cdot 5! = 2 \cdot (12-r)! \] Calculating \( 5! = 120 \): \[ 12 \cdot 120 = 2 \cdot (12-r)! \] \[ 1440 = 2 \cdot (12-r)! \] Dividing both sides by 2 gives: \[ 720 = (12-r)! \] ### Step 9: Find \( r \) by determining \( (12-r) \) We know \( 720 = 6! \), so: \[ 12 - r = 6 \] Thus, solving for \( r \): \[ r = 12 - 6 = 6 \] ### Final Answer Therefore, the value of \( r \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|9 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)P_(r) = 840 and ""^(n)C_(r) = 35 , then r is equal to ………… .

If ""^(56)P_(r+6) : ""^(54)P_(r+3)= 30800, then r is

If (""^(n+2)C_(6))/(""^(n-2)P_(2))=11 , then n satifes the equation

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

If |{:(.^(9)C_(4),.^(9)C_(5),.^(10)C_(r)),(.^(10)C_(6 ),.^(10)C_(7),.^(11)C_(r+2)),(.^(11)C_(8),.^(11)C_(9),.^(12)C_(r+4)):}|=0 , then the value of r is equal to

If ""^(12) P_r =1320, find r.

If \ ^(k+5)P_(k+1)=(11(k-1))/2dot\ ^(k+3)P_(k\ )P_k then the values of k are 7\ a n d\ 11 b. 6\ a n d\ 7 c. 2\ a n d\ 11 d. 2\ a n d\ 6

If ^(22)P_(r+1) : ^(20)P_(r+2)=11 : 52 ,find r

If .^(6)P_(r): .^(6)P_(5) = 1:2 , find the value of r.

If A , B ,\ C are three mutually exclusive and exhausitive events of an experiment such that 3P(A) = 2P(B) = P(C),\ t h e n\ P(A) is equal to a. 1/(11) b. 2/(11) c. 5/(11) d. 6/(11)