Home
Class 11
MATHS
If ""^(n-1)C(3)+""^(n-1)C(4)gt""^nC(3), ...

If `""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3)`, then

A

`nle4`

B

`ngt5`

C

`ngt7`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \binom{n-1}{3} + \binom{n-1}{4} > \binom{n}{3} \), we can follow these steps: ### Step 1: Rewrite the Left Side Using the identity for combinations, we know that: \[ \binom{n-1}{r} + \binom{n-1}{r+1} = \binom{n}{r+1} \] For our case, we can set \( r = 3 \): \[ \binom{n-1}{3} + \binom{n-1}{4} = \binom{n}{4} \] ### Step 2: Substitute into the Inequality Now, we can substitute this back into our original inequality: \[ \binom{n}{4} > \binom{n}{3} \] ### Step 3: Write the Combinations in Factorial Form Using the formula for combinations, we can express both sides: \[ \frac{n!}{4!(n-4)!} > \frac{n!}{3!(n-3)!} \] ### Step 4: Simplify the Inequality Since \( n! \) is common on both sides, we can cancel it (assuming \( n > 0 \)): \[ \frac{1}{4!(n-4)!} > \frac{1}{3!(n-3)!} \] This simplifies to: \[ 3!(n-3)! > 4!(n-4)! \] ### Step 5: Further Simplify We can express \( 4! \) as \( 4 \times 3! \): \[ 3!(n-3)! > 4 \times 3!(n-4)! \] Now, we can cancel \( 3! \) from both sides: \[ (n-3)! > 4(n-4)! \] ### Step 6: Rewrite \( (n-3)! \) We can express \( (n-3)! \) as \( (n-3)(n-4)! \): \[ (n-3)(n-4)! > 4(n-4)! \] Assuming \( (n-4)! \neq 0 \) (which is true for \( n > 4 \)), we can cancel \( (n-4)! \): \[ n-3 > 4 \] ### Step 7: Solve for \( n \) This simplifies to: \[ n > 7 \] ### Conclusion Thus, the solution to the inequality \( \binom{n-1}{3} + \binom{n-1}{4} > \binom{n}{3} \) is: \[ n > 7 \]
Promotional Banner

Topper's Solved these Questions

  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|60 Videos
  • PERMUTATIONS AND COMBINATIONS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section II - Assertion Reason Type|9 Videos
  • PARABOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|30 Videos
  • PROBABILITY

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|45 Videos

Similar Questions

Explore conceptually related problems

If ""^(n)C_(3) + ""^(n)C_4 gt ""^(n+1) C_3 , then.

""^(n-1)C_3+""^(n-1)C_4 gt ""^(n)C_3 if

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is

The inequality .^(n+1)C_(6)-.^(n)C_(4) gt .^(n)C_(5) holds true for all n greater than ________.

Determine n if (i) ""^(2n)C_(3) : ""^(n)C_(3) = 12:1 (ii) ""^(2n)C_(3): ""^(n)C_(3)= 11:1

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

If (1+x)^(n)=C_(0)+C_(1)x+…..+C_(n)x^(n) , then (C_(1))/(C_(0))+(2C_(2))/(C_(1))+(3C_(3))/(C_(2))+....+(nC_(n))/(C_(n-1)) is :