Home
Class 11
MATHS
If-(pi)/(2)lt0lt(pi)/(2), then the minim...

`If-(pi)/(2)lt0lt(pi)/(2),` then the minimum value of `cos^(3)theta+sec^(3)thets` is

A

1

B

2

C

0

D

none of these.

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of \( \cos^3 \theta + \sec^3 \theta \) for \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Define the terms**: Let \( x = \cos^3 \theta \) and \( y = \sec^3 \theta \). We know that \( \sec \theta = \frac{1}{\cos \theta} \), so \( y = \sec^3 \theta = \frac{1}{\cos^3 \theta} = \frac{1}{x} \). 2. **Apply the AM-GM inequality**: According to the AM-GM inequality, for any non-negative numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] In our case, we apply it to \( x \) and \( y \): \[ \frac{\cos^3 \theta + \sec^3 \theta}{2} \geq \sqrt{\cos^3 \theta \cdot \sec^3 \theta} \] 3. **Calculate the product**: The product \( \cos^3 \theta \cdot \sec^3 \theta \) simplifies as follows: \[ \cos^3 \theta \cdot \sec^3 \theta = \cos^3 \theta \cdot \frac{1}{\cos^3 \theta} = 1 \] 4. **Substitute back into the inequality**: Now, substituting back into the AM-GM inequality: \[ \frac{\cos^3 \theta + \sec^3 \theta}{2} \geq \sqrt{1} = 1 \] Therefore, \[ \cos^3 \theta + \sec^3 \theta \geq 2 \] 5. **Conclusion**: The minimum value of \( \cos^3 \theta + \sec^3 \theta \) is 2. This minimum occurs when \( \cos^3 \theta = \sec^3 \theta \), which happens when \( \cos \theta = 1 \) (i.e., \( \theta = 0 \)). ### Final Answer: The minimum value of \( \cos^3 \theta + \sec^3 \theta \) is \( 2 \). ---

To find the minimum value of \( \cos^3 \theta + \sec^3 \theta \) for \( -\frac{\pi}{2} < \theta < \frac{\pi}{2} \), we can use the Arithmetic Mean-Geometric Mean (AM-GM) inequality. ### Step-by-Step Solution: 1. **Define the terms**: Let \( x = \cos^3 \theta \) and \( y = \sec^3 \theta \). We know that \( \sec \theta = \frac{1}{\cos \theta} \), so \( y = \sec^3 \theta = \frac{1}{\cos^3 \theta} = \frac{1}{x} \). 2. **Apply the AM-GM inequality**: According to the AM-GM inequality, for any non-negative numbers \( a \) and \( b \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 1 - Solved Mcq|54 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If 0 lt theta lt pi, then minimum value of 3sintheta+cosec^3 theta is

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If (pi)/(2) lt theta lt (3pi)/(2) then sqrt(tan^(2)theta-sin^(2)theta) is equal to :

If 0 lt x lt pi/2 then

If pi lt theta lt (3pi)/(2) , then find the value of sqrt((1-cos2theta)/(1+cos 2 theta)) .

If cos^(-1)((n)/(2pi))lt(2pi)/(3) then maximum and minimum values of integer in are respectively

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

If pi

If 0 lt x lt pi /2 then

If f(theta) = sin(tan^(-1)(sintheta/sqrt(cos2theta))) , where -pi/4 lt theta lt pi/4, then the value of d/(d(tantheta))\ f(theta) is