Home
Class 11
MATHS
If a > 1, b > 1 , then the minimum val...

If a > 1, b > 1 , then the minimum value of `log_b a+ log_a b` is :

A

0

B

1

C

2

D

none of

Text Solution

Verified by Experts

The correct Answer is:
C

Using `A.M.geG.M.,` wc have
`(log_(b)a+log_(a)b)/(2)gesqrt(log_(b)alog_(a)b)`
`impliescos^(3)theta+sec^(3)thetage2.`
Hence, the minimum value of `log_(b)a+log_(a)b` is 2 and it is attained when a=b.
Promotional Banner

Topper's Solved these Questions

  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 1 - Solved Mcq|54 Videos
  • INEQUALITIES

    OBJECTIVE RD SHARMA ENGLISH|Exercise Section 2 - Assertion Reason Type|9 Videos
  • HYPERBOLA

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|29 Videos
  • LOGARITHMS

    OBJECTIVE RD SHARMA ENGLISH|Exercise Chapter Test|21 Videos

Similar Questions

Explore conceptually related problems

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

The value of log ab- log|b|=

If a,b,c,d in R^(+)-{1} , then the minimum value of log_(d) a+ log_(c)b+log _(a)c+log_(b)d is

If a,b, and c are positive and 9a+3b+c=90 , then the maximum value of (log a+log b+log c) is (base of the logarithm is 10)________.

If "log"_(a) ab = x, then the value of "log"_(b)ab, is

If a, b, c are positive real numbers, then the minimum value of a^(logb-logc)+b^(logc-loga)+c^(loga-logb) is

If a^4b^5=1 then the value of log_a(a^5b^4) equals

If a^4b^5=1 then the value of log_a(a^5b^4) equals

If log_(sqrt8) b = 3 1/3 , then find the value of b.

The value of a^((log_b(log_bx))/(log_b a)), is